Potential anti-HIV and antitrypanosomal components revealed in Sorindeia nitidula via LC-ESI-QTOF-MS/MS

Du Petit-Thouars, L. M. A. A. Genera nova Madagascariensia, secundum methodum Jussiaeanam disposita. Paris. https://www.digitalesammlungen.de/en/view/bsb10301575? p. 1. (1806).Breteler, F. J. The African genus Sorindeia (Anacardiaceae): A synoptic revision. Adansonia 25, 93–113 (2003).
Google Scholar 
Bouwet, A. Féticheurs et médecines traditionnelles du congo (brazzaville). Paris : Office de la Recherche Scientifique et Technique Outre-Mer (O.R.S.T.O.M.). 55 (1960).Ndongo, J. T. et al. A new C-glucosylflavone from Sorindeia juglandifolia. Z. Naturforsch. C. 68, 169–174 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kamkumo, R. G. et al. Compounds from Sorindeia juglandifolia (Anacardiaceae) exhibit potent anti-plasmodial activities in vitro and in vivo. Malar. J. 11, 1–7 (2013).
Google Scholar 
Donfack, V. D. et al. Antimycobacterial activity of selected medicinal plants extracts from Cameroon. Int. J. Biol. Chem. 8, 273–288 (2014).
Google Scholar 
Malú, Q. et al. Contribution to the preclinical safety assessment of Lannea velutina and Sorindeia juglandifolia leaves. Plants 12, 130 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Makoye, P. M., Daniel, I. J., Masota, M. E., Sempombe, J. & Mugoyela, V. Phytochemical screening, antibacterial activity and bioautography of Sorindeia madagascariensis, mucuna stans, and Albizia harveyi. J. Dis. Med. Plant 6, 65–71 (2020).
Google Scholar 
Barat, C., Pepin, J. & Tremblay, M. J. HIV-1 replication in monocyte-derived dendritic cells is stimulated by melarsoprol, one of the main drugs against human African trypanosomiasis. J. Mol. Biol. 410, 1052–1064 (2011).Article 
CAS 
PubMed 

Google Scholar 
Camacho, M. D. R. et al. In vitro activity of Triclisia patens and some bisbenzylisoquinoline alkaloids against eishmania donovani and Trypanosoma brucei brucei. Phytother. Res. 16, 432–436 (2002).Article 
CAS 

Google Scholar 
Siwe-Noundou, X. et al. Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches. Sci. Rep. 9, 4718 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Larit, F. et al. Proposed mechanism for the antitrypanosomal activity of quercetin and myricetin isolated from Hypericum afrum Lam.: Phytochemistry, in vitro testing and modeling studies. Molecules 26, 1009 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vigueira, P. A., Ray, S. S., Martin, B. A., Ligon, M. M. & Paul, K. S. Effects of the green tea catechin (−)-epigallocatechin gallate on Trypanosoma brucei. Int. J. Parasitol. Drugs Drug Resist. 2, 225–229 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Amisigo, C. M., Antwi, C. A., Adjimani, J. P. & Gwira, T. M. In vitro anti-trypanosomal effects of selected phenolic acids on Trypanosoma brucei. PLoS One 14, e0216078 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Z. et al. Lc-esi-qtof-ms/ms characterization and estimation of the antioxidant potential of phenolic compounds from different parts of the lotus (Nelumbo nucifera) seed and rhizome. ACS Omega 7, 14630–14642 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ali, A., Cottrell, J. J. & Dunshea, F. R. Lc-ms/ms characterization of phenolic metabolites and their antioxidant activities from australian native plants. Metabolites 12, 1016 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rafi, M. et al. LC-MS/MS based metabolite profiling and lipase enzyme inhibitory activity of Kaempferia angustifolia Rosc with different extracting solvents. Arab. J. Chem. 15, 104232 (2022).Article 
CAS 

Google Scholar 
Shadab, H. et al. Cross-mixing study of a poisonous Cestrum species, Cestrum diurnum in herbal raw material by chemical fingerprinting using LC-ESI-QTOF-MS/MS. Arab. J. Chem. 13, 7851–7859 (2020).Article 
ADS 
CAS 

Google Scholar 
Kumar, S. S., Krishnakumar, K. & John, M. Flavonoids from the butanol extract of Carica papaya L. cultivar’Red Lady’leaf using UPLC-ESI-Q-ToF-MS/MS analysis and evaluation of the antioxidant activities of its fractions. Food Chem. Adv. 1, 100126 (2022).Article 

Google Scholar 
Uttara, B., Singh, A. V., Zamboni, P. & Mahajan, R. T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65–74 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thadhani, V. M. et al. Antioxidant activity of some lichen metabolites. Nat. Prod. Res. 25, 1827–1837 (2011).Article 
CAS 
PubMed 

Google Scholar 
Eze, F. I., Noundou, X. S., Osadebe, P. O. & Krause, R. W. Phytochemical, anti-inflammatory and anti-trypanosomal properties of Anthocleista vogelii Planch (Loganiaceae) stem bark. J. Ethnopharmacol. 238, 111851 (2019).Article 
CAS 
PubMed 

Google Scholar 
Teinkela, J. E. M. et al. Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: An antimalarial, antitrypanosomal and cytotoxity evaluation. Saudi J. Biol. Sci. 25, 117–122 (2018).Article 

Google Scholar 
Grobler, J. A. et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl. Acad. Sci. USA 99, 6661–6666 (2002).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Siwe-Noundou, X. et al. Biological activity of plant extracts and isolated compounds from Alchornea laxiflora: Anti-HIV, antibacterial and cytotoxicity evaluation. S. Afr. J. Bot. 122, 498–503 (2019).Article 

Google Scholar 
Djouwoug, C. N. et al. In vitro and in vivo antiplasmodial activity of hydroethanolic bark extract of Bridelia atroviridis müll Arg (Euphorbiaceae) and lc-ms-based phytochemical analysis. J. Ethnopharmacol. 266, 113424 (2021).Article 
CAS 
PubMed 

Google Scholar 
Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D. & Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 166, 179–191 (2015).Article 
CAS 
PubMed 

Google Scholar 
Tang, C. & Sojinu, O. S. Simultaneous determination of caffeic acid phenethyl ester and its metabolite caffeic acid in dog plasma using liquid chromatography tandem mass spectrometry. Talanta 94, 232–239 (2012).Article 
CAS 
PubMed 

Google Scholar 
Lee, Y. H. et al. Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens) by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties. J. Food Drug Anal. 25, 776–788 (2017).Article 
CAS 
PubMed 

Google Scholar 
Chang, C. L. & Wu, R. T. Quantification of (+)-catechin and (−)-epicatechin in coconut water by LC–MS. Food Chem. 126, 710–717 (2011).Article 
CAS 

Google Scholar 
Tourino, S. et al. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber. Rapid Commun. Mass Spectrom. 22, 3489–3500 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Li, Y., Leung, K. T., Yao, F., Ooi, L. S. & Ooi, V. E. Antiviral flavans from the leaves of Pithecellobium c lypearia. J. Nat. Prod. 69, 833–835 (2006).Article 
CAS 
PubMed 

Google Scholar 
Umehara, M., Yanae, K., Maruki-Uchida, H. & Sai, M. Investigation of epigallocatechin-3-O-caffeoate and epigallocatechin-3-Op-coumaroate in tea leaves by LC/MS-MS analysis. Food Res. Int. 102, 77–83 (2017).Article 
CAS 
PubMed 

Google Scholar 
Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B. & Simirgiotis, M. J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Gu, D. et al. A LC/QTOF–MS/MS application to investigate chemical compositions in a fraction with protein tyrosine phosphatase 1B inhibitory activity from Rosa rugosa flowers. Phytochem. Anal. 24, 661–670 (2013).Article 
CAS 
PubMed 

Google Scholar 
Li, C. & Seeram, N. P. Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves. J. Sep. Sci. 41, 2331–2346 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dawande, V. R. & Gurav, R. V. Qualitative analysis of phytochemical in Eulophia nuda using LCMS. J. Med. Plants Stud. 9, 136–140 (2021).
Google Scholar 
Owor, R. O. et al. Anti-inflammatory flavanones and flavones from Tephrosia linearis. J. Nat. Prod. 83, 996–1004 (2020).Article 
CAS 
PubMed 

Google Scholar 
Taamalli, A. et al. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 26, 320–330 (2015).Article 
CAS 
PubMed 

Google Scholar 
Escobar-Avello, D. et al. Phenolic profile of grape canes: Novel compounds identified by lc-esi-ltq-orbitrap-ms. Molecules 24, 3763 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Jaiswal, Y., Liang, Z., Ho, A., Chen, H. & Zhao, Z. Metabolite profiling of tissues of Acorus calamus and Acorus tatarinowii rhizomes by using LMD, UHPLC-QTOF MS, and GC-MS. Planta Med. 81, 333–341 (2015).Article 
CAS 
PubMed 

Google Scholar 
Katchborian, N. A. Biomarkers of anti-inflammatory and neuroprotective activity investigated by untargeted UPLC-ESI-QTOF-MS metabolomics analyses 123f Dissertação (Mestrado em Química)-Universidade Federal de Alfenas. Alfenas/MG 80, 108 (2020).
Google Scholar 
Dong, C. F. et al. Sesquilignans and sesquiterpenoid from the stem barks of Illicium simonsii and their anti-AChE activity. Nat. Prod. Bioprospect. 2, 133–137 (2012).Article 
CAS 
PubMed Central 

Google Scholar 
Wang, Y., Cheng, J., Jiang, W. & Chen, S. Metabolomics study of flavonoids in Coreopsis tinctoria of different origins by UPLC–MS/MS. PeerJ 10, e14580 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Sulaiman, C. T. & Balachandran, I. LC/MS characterization of antioxidant flavonoids from Tragia involucrata L. Beni-Suef Univ. J. Basic Appl. Sci. 5, 231–235 (2016).
Google Scholar 
Nekoei, S. et al. The anti-trypanosoma activities of medicinal plants: A systematic review of the literature. Vet. Med. Sci. 8, 2738–2772 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Teinkela, J. E. M. et al. In vitro anti-trypanosomal activity of crude extract and fractions of Trichoscypha acuminata stem bark, Spathodea campanulata flowers, and Ficus elastica lianas on Trypanosoma brucei brucei. AIMS Mol. Sci. 11, 63–71 (2024).Article 

Google Scholar 
Fouokeng, Y. et al. In vitro antimalarial, antitrypanosomal and HIV-1 integrase inhibitory activities of two Cameroonian medicinal plants: Antrocaryon klaineanum (Anacardiaceae) and Diospyros conocarpa (Ebenaceae). S. Afr. J. Bot. 122, 510–517 (2019).Article 
CAS 

Google Scholar 
Chen, Z., Zhong, B., Barrow, C. J., Dunshea, F. R. & Suleria, H. A. Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arab. J. Chem. 14, 103151 (2021).Article 
CAS 

Google Scholar 
Ebede, G. R. et al. Isolation of new secondary metabolites from the liana Landolphia lucida K. Schum. (Apocynaceae). Phytochem. Lett. 41, 27–33 (2021).Article 
CAS 

Google Scholar 
Cassidy, A., Hanley, B. & Lamuela-Raventos, R. M. Isoflavones, lignans and stilbenes—origins, metabolism and potential importance to human health. J. Sci. Food Agric. 80, 1044–1062 (2000).Article 
CAS 

Google Scholar 
Behl, T. et al. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals 14, 381 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, H. et al. Methyl gallate: Review of pharmacological activity. Pharmacol. Res. 194, 106849 (2023).Article 
CAS 
PubMed 

Google Scholar 
Geana, E. I. et al. Antioxidant and wound healing bioactive potential of extracts obtained from bark and needles of softwood species. Antioxidants 12, 1383 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ersan, S., GüçlüÜstündağ, O., Carle, R. & Schweiggert, R. M. Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (exo-and mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agric. Food Chem. 64, 5334–5344 (2016).Article 
CAS 
PubMed 

Google Scholar 
Torres-Benítez, A. et al. Phytochemical characterization and in vitro and in silico biological studies from ferns of genus Blechnum (Blechnaceae, Polypodiales). Antioxidants 12, 540 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Fabre, N., Rustan, I., de Hoffmann, E. & Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 707–715 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rao, E. V., Venkataratnam, G. & Vilain, C. Flavonoids from Tephrosia fulvinervis. Phytochem. 24, 2427–2430 (1985).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles