Genome-scale models in human metabologenomics

Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).Article 
PubMed 

Google Scholar 
Xu, Y. et al. An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–131 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).Article 

Google Scholar 
Mardinoglu, A. & Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 271, 142–154 (2012). An extensive review of the use of GEMs in systems medicine-based applications.Article 
CAS 
PubMed 

Google Scholar 
Hyduke, D. R., Lewis, N. E. & Palsson, B. Ø. Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 9, 167–174 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Palsson, B. & Zengler, K. The challenges of integrating multi-omic data sets. Nat. Chem. Biol. 6, 787–789 (2010).Article 
PubMed 

Google Scholar 
Mardinoglu, A., Boren, J., Smith, U., Uhlen, M. & Nielsen, J. Systems biology in hepatology: approaches and applications. Nat. Rev. Gastroenterol. Hepatol. 15, 365–377 (2018). An extensive review of the studies that use biological networks for integration of multiomics data for complex liver diseases.Article 
CAS 
PubMed 

Google Scholar 
Bajwa, J., Munir, U., Nori, A. & Williams, B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc. J. 8, e188–e194 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Oberhardt, M. A., Palsson, B. Ø. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Mardinoglu, A., Gatto, F. & Nielsen, J. Genome-scale modeling of human metabolism — a systems biology approach. Biotechnol. J. 8, 985–996 (2013). An extensive review of the algorithms for the reconstruction of cell- and tissue- type specific GEMs.Article 
CAS 
PubMed 

Google Scholar 
O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572–579 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yizhak, K., Chaneton, B., Gottlieb, E. & Ruppin, E. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11, 817 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Terekhanova, N. V. et al. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 623, 432–441 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007). This study presents the first global human GEM and its use for systems biology-based applications.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, H. et al. The Edinburgh Human Metabolic Network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Hao, T., Ma, H. W., Zhao, X. M. & Goryanin, I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 11, 393 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Palsson, B. Ø. Systems Biology: Constraint-Based Reconstruction and Analysis (Cambridge Univ. Press, 2015).Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).Article 
CAS 
PubMed 

Google Scholar 
Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).Article 
PubMed 

Google Scholar 
Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M. in ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (eds. Bock, G. & Goode, J. A.) 91–103 (Wiley, 2002).Milacic, M. et al. The Reactome Pathway Knowledgebase 2024 Nucleic Acids Res. 52, D672–D678 (2024).Article 
PubMed 

Google Scholar 
Quek, L.-E. et al. Reducing Recon 2 for steady-state flux analysis of HEK cell culture. J. Biotechnol. 184, 172–178 (2014).Article 
CAS 
PubMed 

Google Scholar 
Smallbone, K. Striking a balance with Recon 2.1. Preprint at arXiv https://doi.org/10.48550/arXiv.1311.5696 (2014).Swainston, N. et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12, 109 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018). This paper presents the community-based global reconstruction of human metabolism.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, eaaz1482 (2020). This paper presents an extensively curated global human GEM that unifies two parallel model lineages.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dahal, S., Yurkovich, J. T., Xu, H., Palsson, B. O. & Yang, L. Synthesizing systems biology knowledge from omics using genome-scale models. Proteomics 20, 1900282 (2020).Article 
CAS 

Google Scholar 
Mardinoglu, A. & Nielsen, J. New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34, 91–97 (2015).Article 
CAS 
PubMed 

Google Scholar 
Bordbar, A. & Palsson, B. O. Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uhlén, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Satish Kumar, V., Dasika, M. S. & Maranas, C. D. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008). This paper presents a computational method that describes the tissue specificity of human metabolism on a large scale.Article 
CAS 
PubMed 

Google Scholar 
Schultz, A. & Qutub, A. A. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput. Biol. 12, e1004808 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10, e1003424 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Bordbar, A. et al. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).Article 
CAS 
PubMed 

Google Scholar 
Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Jensen, P. A. & Papin, J. A. Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27, 541–547 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 153 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Pacheco, M. P., Ji, J., Prohaska, T., García, M. M. & Sauter, T. scFASTCORMICS: a contextualization algorithm to reconstruct metabolic multi-cell population models from single-cell RNAseq data. Metabolites 12, 1211 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van Berlo, R. J. et al. Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 206–216 (2011).Article 
PubMed 

Google Scholar 
Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Machado, D. & Herrgard, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10, e1003580 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 4, 318–329.e6 (2017). A systemic benchmarking study for several algorithms that use omics data to construct cell-line- and tissue-specific GEMs.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gustafsson, J. et al. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proc. Natl Acad. Sci. USA 120, e2217868120 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Wiback, S. J. & Palsson, B. O. Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83, 808–818 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vo, T. D., Greenberg, H. J. & Palsson, B. O. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279, 39532–39540 (2004).Article 
CAS 
PubMed 

Google Scholar 
Vo, T. D., Paul Lee, W. N. & Palsson, B. O. Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh’s syndrome. Mol. Genet. Metab. 91, 15–22 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bordbar, A., Jamshidi, N. & Palsson, B. O. iAB-RBC-283: a proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Syst. Biol. 5, 110 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Thomas, A., Rahmanian, S., Bordbar, A., Palsson, B. O. & Jamshidi, N. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance. Sci. Rep. 4, 3925 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Yousefi, M., Marashi, S.-A., Sharifi-Zarchi, A. & Taleahmad, S. The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell Biosci. 9, 71 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sen, P. et al. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 63, 1017–1031 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sen, P. et al. Quantitative genome-scale metabolic modeling of human CD4+ T-cell differentiation reveals subset-specific regulation of glycosphingolipid pathways 37, 109973 (2021).Puniya, B. L. et al. Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders. NPJ Syst. Biol. Appl. 7, 4 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Varemo, L. et al. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep. 11, 921–933 (2015).Article 
PubMed 

Google Scholar 
Zhao, Y. & Huang, J. Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data. Biochem. Biophys. Res. Commun. 415, 450–454 (2011).Article 
CAS 
PubMed 

Google Scholar 
Karlstadt, A. et al. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst. Biol. 6, 114 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Lewis, N. E. et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat. Biotechnol. 28, 1279–1285 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sertbaş, M., Ülgen, K. & Çakır, T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 4, 542–553 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Martín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E. & González, J. Genome-scale reconstruction of the human astrocyte metabolic network. Front. Aging Neurosci. 9, 23 (2017).Article 
PubMed 

Google Scholar 
Baloni, P. et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer’s disease. Cell Rep. Med. 1, 100138 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baloni, P. et al. Multi-omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer’s disease. Commun. Biol. 5, 1074 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Preciat, G. et al. Mechanistic model-driven exometabolomic characterisation of human dopaminergic neuronal metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.06.30.450562 (2022).Chang, R. L., Xie, L., Xie, L., Bourne, P. E. & Palsson, B. O. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput. Biol. 6, e1000938 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Sohrabi-Jahromi, S., Marashi, S.-A. & Kalantari, S. A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm. Genome 27, 158–167 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nanda, P. & Ghosh, A. Genome scale-differential flux analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection. PLoS Comput. Biol. 17, e1008860 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. O. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
McGarrity, S., Halldórsson, H., Palsson, S., Johansson, P. I. & Rolfsson, Ó. Understanding the causes and implications of endothelial metabolic variation in cardiovascular disease through genome-scale metabolic modeling. Front. Cardiovasc. Med. 3, 10 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, G.-H. et al. System-level metabolic modeling facilitates unveiling metabolic signature in exceptional longevity. Aging Cell 21, e13595 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Özcan, E. & Çakır, T. Reconstructed metabolic network models predict flux-level metabolic reprogramming in glioblastoma. Front. Neurosci. 10, 156 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Damiani, C. et al. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLoS Comput. Biol. 13, e1005758 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Masid, M., Ataman, M. & Hatzimanikatis, V. Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nat. Commun. 11, 2821 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yizhak, K. et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. eLife 3, e03641 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).Article 
PubMed 

Google Scholar 
Turanli, B. et al. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine 42, 386–396 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lewis, J. E. & Kemp, M. L. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gatto, F., Miess, H., Schulze, A. & Nielsen, J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci. Rep. 5, 10738 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ghaffari, P. et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5, 8183 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yizhak, K. et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol. Syst. Biol. 10, 744 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Zielinski, D. C. et al. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci. Rep. 7, 41241 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bordbar, A. et al. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst. Biol. 5, 180 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Nam, H. et al. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Comput. Biol. 10, e1003837 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article 
PubMed 

Google Scholar 
Richelle, A., Chiang, A. W. T., Kuo, C. C. & Lewis, N. E. Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions. PLoS Comput. Biol. 15, e1006867 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Thiele, I. et al. Personalized whole‐body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020). This study presents two sex‐specific WBMMs that used organ‐specific information from the literature and omics data.Article 
PubMed 
PubMed Central 

Google Scholar 
Martins Conde, P., Pfau, T., Pires Pacheco, M. & Sauter, T. A dynamic multi-tissue model to study human metabolism. NPJ Syst. Biol. Appl. 7, 5 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Foguet, C. et al. Genetically personalised organ-specific metabolic models in health and disease. Nat. Commun. 13, 7356 (2022). This study presents personalized organ-specific GEMs for 524,615 individuals to define how genetic variants affect biochemical reaction fluxes across major human tissues.Article 
PubMed 
PubMed Central 

Google Scholar 
Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012). An extensive review and presentation of the phylogeny of more than 100 COBRA.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tanaka, K. et al. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res. 41, 687–699 (2013).Article 
CAS 
PubMed 

Google Scholar 
López-Agudelo, V. A. et al. A systematic evaluation of Mycobacterium tuberculosis genome-scale metabolic networks. PLoS Comput. Biol. 16, e1007533 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shoaie, S. et al. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, 2532 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).Article 
PubMed 

Google Scholar 
Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).Article 
PubMed 

Google Scholar 
Beura, S., Kundu, P., Das, A. K. & Ghosh, A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Comput. Biol. Med. 149, 105997 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ye, C. et al. Genome-scale metabolic network models: from first-generation to next-generation. Appl. Microbiol. Biotechnol. 106, 4907–4920 (2022).Article 
CAS 
PubMed 

Google Scholar 
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).Article 
CAS 
PubMed 

Google Scholar 
Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023). This study presents the microbial GEMs for 7,302 strains, which have been extensively curated based on comparative genomics and literature searches.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).Article 
CAS 
PubMed 

Google Scholar 
Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).Article 
PubMed 

Google Scholar 
Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bidkhori, G. & Shoaie, S. MIGRENE: the toolbox for microbial and individualized GEMs, reactobiome and community network modelling. Metabolites 14, 132 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bidkhori, G. et al. The reactobiome unravels a new paradigm in human gut microbiome metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.02.01.428114 (2021). This study describes a comprehensive computational platform for population stratification based on microbiome composition and community level metabolic models.Heinken, A. et al. APOLLO: a genome-scale metabolic reconstruction resource of 247,092 diverse human microbes spanning multiple continents, age groups, and body sites. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560573 (2023). A comprehensive resource of human microbial GEMs spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups and five body sites.Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Domenzain, I. et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat. Commun. 13, 3766 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat. Protoc. 19, 629–667 (2024). This paper presents the latest version of GECKO method that incorporates the enzymatic constraints using kinetic and omics data to improve the predictive power of a GEM.Article 
CAS 
PubMed 

Google Scholar 
Li, F. et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat. Catal. 5, 662–672 (2022).Article 
CAS 

Google Scholar 
Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Zomorrodi, A. R., Islam, M. M. & Maranas, C. D. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 3, 247–257 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316 (2011).Article 
PubMed 

Google Scholar 
Louca, S. & Doebeli, M. Calibration and analysis of genome-based models for microbial ecology. eLife 4, e08208 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Popp, D. & Centler, F. μbialSim: constraint-based dynamic simulation of complex microbiomes. Front. Bioeng. Biotechnol. 8, 574 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems 5, e00606-19 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Baldini, F. et al. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 35, 2332–2334 (2019).Article 
CAS 
PubMed 

Google Scholar 
Mardinoglu, A. et al. Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13, 916 (2017). This study presents personalized GEMs for human hepatocytes that account for the interactions between liver and other metabolic tissues, including adipose, muscle and brain tissues.Article 
PubMed 
PubMed Central 

Google Scholar 
El-Semman, I. E. et al. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol. 8, 41 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, S. et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 24, 172–184 (2016). This study presents cell-specific integrated networks that integrate functional GEMs with transcriptional regulatory and PPI networks.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease. Cell Metab. 26, 281–283 (2017).Article 
CAS 
PubMed 

Google Scholar 
Lee, S., Mardinoglu, A., Zhang, C., Lee, D. & Nielsen, J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res. 44, 5529–5539 (2016). This paper presents HCC tumour-specific integrated networks that integrate GEMs with signalling networks.Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, S. et al. Network analyses identify liver‐specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Chella Krishnan, K. et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst. 6, 103–115.e7 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chella Krishnan, K. et al. Liver pyruvate kinase promotes NAFLD/NASH in both mice and humans in a sex-specific manner. Cell. Mol. Gastroenterol. Hepatol. 11, 389–406 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, Z. et al. Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function. Metab. Eng. 52, 263–272 (2019).Article 
CAS 
PubMed 

Google Scholar 
Mardinoglu, A., Uhlen, M. & Borén, J. Broad views of non-alcoholic fatty liver disease. Cell Syst. 6, 7–9 (2018).Article 
CAS 
PubMed 

Google Scholar 
Arif, M. et al. iNetModels 2.0: an interactive visualization and database of multi-omics data. Nucleic Acids Res. 49, W271–W276 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Owen, M. J. et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat. Commun. 13, 4057 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seydel, C. Baby’s first genome. Nat. Biotechnol. 40, 636–640 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq PROJECt. Am. J. Hum. Genet. 104, 76–93 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sahoo, S., Franzson, L., Jonsson, J. J. & Thiele, I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol. Biosyst. 8, 2545–2558 (2012).Article 
CAS 
PubMed 

Google Scholar 
Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292.e14 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zaunseder, E. et al. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab. 36, 1882–1897.e7 (2024). This paper presents a resource of 360 organ-resolved, sex-specific whole-body models of newborn and infant metabolism spanning the first 180 days of life.Article 
CAS 
PubMed 

Google Scholar 
Torkamani, A., Andersen, K. G., Steinhubl, S. R. & Topol, E. J. High-definition medicine. Cell 170, 828–843 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qiu, C. et al. Multi-omics data integration for identifying osteoporosis biomarkers and their biological interaction and causal mechanisms. iScience 23, 100847 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O. & Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu, M. & Zhan, X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 9, 77–102 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bordbar, A. et al. Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst. 1, 283–292 (2015).Article 
CAS 
PubMed 

Google Scholar 
Battisti, U. M. et al. Exploration of novel urolithin C derivatives as non-competitive inhibitors of liver pyruvate kinase. Pharmaceuticals 16, 668 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nain-Perez, A. et al. Tuning liver pyruvate kinase activity up or down with a new class of allosteric modulators. Eur. J. Med. Chem. 250, 115177 (2023).Article 
CAS 
PubMed 

Google Scholar 
Battisti, U. M. et al. Ellagic acid and its metabolites as potent and selective allosteric inhibitors of liver pyruvate kinase. Nutrients 15, 577 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nain-Perez, A. et al. Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase. Eur. J. Med. Chem. 234, 114270 (2022).Article 
CAS 
PubMed 

Google Scholar 
Battisti, U. M. et al. Serendipitous identification of a covalent activator of liver pyruvate kinase. ChemBioChem 24, e202200339 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, C. et al. Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning. eBioMedicine 83, 104214 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, W. et al. Characterization of an in vitro steatosis model simulating activated de novo lipogenesis in MAFLD patients. iScience 26, 107727 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, X. et al. The acute effect of different NAD+ precursors included in the combined metabolic activators. Free Radic. Biol. Med. 205, 77–89 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yang, H. et al. Longitudinal metabolomics analysis reveals the acute effect of cysteine and NAC included in the combined metabolic activators. Free Radic. Biol. Med. 204, 347–358 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, C. et al. The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non‐alcoholic fatty liver disease. Mol. Syst. Biol. 16, e9495 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeybel, M. et al. Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Mol. Syst. Biol. 17, e10459 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Altay, O. et al. Combined metabolic activators accelerates recovery in mild-to-moderate COVID-19. Adv. Sci. 8, 2101222 (2021).Article 
CAS 

Google Scholar 
Yulug, B. et al. Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl. Neurodegener. 12, 4 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yulug, B. et al. Combined metabolic activators improve cognitive functions without altering motor scores in Parkinson’s disease. Preprint at medRxiv https://doi.org/10.1101/2021.07.28.21261293 (2021).US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04044131 (2022).Gatto, F. et al. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gatto, F., Maruzzo, M., Magro, C., Basso, U. & Nielsen, J. Prognostic value of plasma and urine glycosaminoglycan scores in clear cell renal cell carcinoma. Front. Oncol. 6, 253 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Gatto, F. et al. Plasma glycosaminoglycans as diagnostic and prognostic biomarkers in surgically treated renal cell carcinoma. Eur. Urol. Oncol. 1, 364–377 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bratulic, S. et al. Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults. J. Biol. Chem. 298, 101575 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gatto, F. et al. Plasma and urine free glycosaminoglycans as monitoring and predictive biomarkers in metastatic renal cell carcinoma: a prospective cohort study. JCO Precis. Oncol. 7, e2200361 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Gatto, F. et al. Plasma and urine free glycosaminoglycans as monitoring biomarkers in nonmetastatic renal cell carcinoma — a prospective cohort study. Eur. Urol. Open Sci. 42, 30–39 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Tamburro, D. et al. Analytical performance of a standardized kit for mass spectrometry-based measurements of human glycosaminoglycans. J. Chromatogr. B 1177, 122761 (2021).Article 
CAS 

Google Scholar 
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04006405 (2023).Bratulic, S. et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc. Natl Acad. Sci. USA 119, e2115328119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05235009 (2023).D’Avanzo, F. et al. Mucopolysaccharidoses differential diagnosis by mass spectrometry-based analysis of urine free glycosaminoglycans — a diagnostic prediction model. Biomolecules 13, 532 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zeybel, M. et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv. Sci. 9, e2104373 (2022).Article 

Google Scholar 
Shandhi, M. M. H. & Dunn, J. P. AI in medicine: where are we now and where are we going? Cell Rep. Med. 3, 100861 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Omiye, J. A., Gui, H., Rezaei, S. J., Zou, J. & Daneshjou, R. Large language models in medicine: the potentials and pitfalls. Ann. Intern. Med. 177, 210–220 (2024).Article 
PubMed 

Google Scholar 
Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).Article 
CAS 
PubMed 

Google Scholar 
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Di Filippo, M. et al. INTEGRATE: model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Comput. Biol. 18, e1009337 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Faria, J. P. et al. ModelSEED v2: high-throughput genome-scale metabolic model reconstruction with enhanced energy biosynthesis pathway prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.10.04.556561 (2023).Vezina, B. et al. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models. eLife 12, RP87406 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Büchel, F. et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
King, Z. A. et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016).Article 
CAS 
PubMed 

Google Scholar 
Moretti, S. et al. MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic acids Res. 44, D523–D526 (2016).Article 
CAS 
PubMed 

Google Scholar 
Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).Article 
CAS 
PubMed 

Google Scholar 
Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Piening, B. D. et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170.e8 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tebani, A. et al. Integration of molecular profiles in a longitudinal wellness profiling cohort. Nat. Commun. 11, 4487 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zahedani, A. D. et al. Digital health application integrating wearable data and behavioral patterns improves metabolic health. NPJ Digital Med. 6, 216 (2023).Article 

Google Scholar 
All of Us Research Program Investigators. The “All of Us” research program. N. Engl. J. Med. 381, 668–676 (2019).Article 

Google Scholar 
Callaway, E. World’s biggest set of human genome sequences opens to scientists. Nature 624, 16–17 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yurkovich, J. T. et al. The transition from genomics to phenomics in personalized population health. Nat. Rev. Genet. 25, 286–302 (2024).Article 
CAS 
PubMed 

Google Scholar 
Shilo, S. et al. 10K: a large‐scale prospective longitudinal study in Israel. Eur. J. Epidemiol. 36, 1187–1194 (2021).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles