Why experimental variation in neuroimaging should be embraced

Ritchie, S. J. et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb. Cortex 28, 2959–2975 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Aycheh, H. M. et al. Biological brain age prediction using cortical thickness data: a large scale cohort study. Front. Aging Neurosci. 10, 252 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Hidese, S. et al. Association of obesity with cognitive function and brain structure in patients with major depressive disorder. J. Affect. Disord. 225, 188–194 (2018).Article 
PubMed 

Google Scholar 
Ledig, C., Schuh, A., Guerrero, R., Heckemann, R. A. & Rueckert, D. Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci. Rep. 8, 11258 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Tolan, E. & Isik, Z. Graph theory based classification of brain connectivity network for autism spectrum disorder. in Bioinformatics and Biomedical Engineering 520–530 (Springer International Publishing, 2018).Zhu, X., Du, X., Kerich, M., Lohoff, F. W. & Momenan, R. Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI. Neurosci. Lett. 676, 27–33 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Open Science Collaboration. PSYCHOLOGY. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).Article 

Google Scholar 
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).Article 
CAS 
PubMed 

Google Scholar 
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).Article 
PubMed 

Google Scholar 
Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).Article 
PubMed 

Google Scholar 
Markiewicz, C. J. et al. OpenNeuro: an open resource for sharing of neuroimaging data. bioRxiv 2021.06.28.450168 https://doi.org/10.1101/2021.06.28.450168 (2021).Rougier, N. P. et al. Sustainable computational science: the ReScience initiative. PeerJ Comput Sci. 3, e142 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Plesser, H. E. Reproducibility vs. replicability: a brief history of a confused terminology. Front. Neuroinform. 11, 76 (2017).Article 
PubMed 

Google Scholar 
Charter, R. A. Methodological commentary: effect of measurement error on tests of statistical significance. J. Clin. Exp. Neuropsychol. 19, 458–462 (1997).Article 
CAS 
PubMed 

Google Scholar 
Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638 (1979).Article 

Google Scholar 
Thompson, W. H., Wright, J., Bissett, P. G. & Poldrack, R. A. Meta-research: dataset decay and the problem of sequential analyses on open datasets. Elife 9, e53498 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Paus, T. Population neuroscience: why and how. Hum. Brain Mapp. 31, 891–903 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Nielsen, M., Haun, D., Kärtner, J. & Legare, C. H. The persistent sampling bias in developmental psychology: a call to action. J. Exp. Child Psychol. 162, 31–38 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Charpentier, C. J. et al. How representative are neuroimaging samples? Large-scale evidence for trait anxiety differences between fMRI and behaviour-only research participants. Soc. Cogn. Affect. Neurosci. 16, 1057–1070 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, J. et al. Cross-Ethnicity/race Generalization Failure of RSFC-Based Behavioral Prediction and Potential Consequences. https://juser.fz-juelich.de/record/910372 (2022).Guyatt, G. H. et al. Users’ guides to the medical literature: IX. A method for grading health care recommendations. JAMA 274, 1800–1804 (1995).Article 
CAS 
PubMed 

Google Scholar 
Jennings, R. G. & Van Horn, J. D. Publication bias in neuroimaging research: implications for meta-analyses. Neuroinformatics 10, 67–80 (2012).Article 
PubMed 

Google Scholar 
Traut, N. et al. Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biol. Psychiatry 83, 579–588 (2018).Article 
PubMed 

Google Scholar 
Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing transparency through a multiverse analysis. Perspect. Psychol. Sci. 11, 702–712 (2016).Article 
PubMed 

Google Scholar 
Guest, O. & Martin, A. E. How computational modeling can force theory building in psychological science. Perspect. Psychol. Sci. 16, 789–802 (2021).Glatard, T. et al. Reproducibility of neuroimaging analyses across operating systems. Front. Neuroinform. 9, 12 (2015).Article 
PubMed 

Google Scholar 
Zuo, X.-N. et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1, 140049 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).Article 
PubMed 

Google Scholar 
Jack, C. R. Jr et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).Article 
CAS 
PubMed 

Google Scholar 
Regier, D. A. et al. DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses. Am. J. Psychiatry 170, 59–70 (2013).Article 
PubMed 

Google Scholar 
Nikolaidis, A. et al. Suboptimal phenotypic reliability impedes reproducible human neuroscience. bioRxiv 2022.07.22.501193 https://doi.org/10.1101/2022.07.22.501193 (2022).Gell, M. et al. The burden of reliability: how measurement noise limits brain-behaviour predictions. bioRxiv 2023.02.09.527898 https://doi.org/10.1101/2023.02.09.527898 (2023).Falk, E. B. et al. What is a representative brain? Neuroscience meets population science. Proc. Natl. Acad. Sci. USA 110, 17615–17622 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Varoquaux, G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 180, 68–77 (2018).Article 
PubMed 

Google Scholar 
Silberzahn, R. et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv. Methods Pract. Psychol. Sci. 1, 337–356 (2018).Article 

Google Scholar 
Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schilling, K. G. et al. Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? Neuroimage 243, 118502 (2021).Article 
PubMed 

Google Scholar 
Fornito, A., Zalesky, A. & Bullmore, E. T. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front. Syst. Neurosci. 4, 22 (2010).PubMed 
PubMed Central 

Google Scholar 
Li, X. et al. Moving beyond processing and analysis-related variation in neuroscience. bioRxiv 2021.12.01.470790 https://doi.org/10.1101/2021.12.01.470790 (2021).Bridgeford, E. W. et al. Eliminating accidental deviations to minimize generalization error and maximize replicability: Applications in connectomics and genomics. PLoS Comput. Biol. 17, e1009279 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bowring, A., Maumet, C. & Nichols, T. E. Exploring the impact of analysis software on task fMRI results. Hum. Brain Mapp. 40, 3362–3384 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bowring, A., Nichols, T. E. & Maumet, C. Isolating the sources of pipeline-variability in group-level task-fMRI results. Hum. Brain Mapp. https://doi.org/10.1002/hbm.25713 (2021).Bhagwat, N. et al. Understanding the impact of preprocessing pipelines on neuroimaging cortical surface analyses. Gigascience 10, giaa155 (2021).Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage Suppl. 1, S102 (2009).Article 

Google Scholar 
Lancaster, J. L. et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Bouthillier, X. et al. Accounting for variance in machine learning benchmarks. Proceedings of Machine Learning and Systems 3, (2021).Parker, D. S. Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arithmetic (University of California (Los Angeles). Computer Science Department, 1997).Skare, S., Hedehus, M., Moseley, M. E. & Li, T. Q. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J. Magn. Reson. 147, 340–352 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kiar, G. et al. Comparing perturbation models for evaluating stability of neuroimaging pipelines. Int. J. High Perform. Comput. Appl. 34, 491–501 (2020).Kiar, G. et al. Numerical uncertainty in analytical pipelines lead to impactful variability in brain networks. bioRxiv 2020.10.15.341495 https://doi.org/10.1101/2020.10.15.341495 (2021).Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).Article 
PubMed 

Google Scholar 
Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Front. Neuroinform. 9, 8 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Dockès, J. et al. NeuroQuery, comprehensive meta-analysis of human brain mapping. Elife 9, e53385 (2020).Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).Krstajic, D., Buturovic, L. J., Leahy, D. E. & Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 6, 10 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Traut, N. et al. Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery. Neuroimage 255, 119171 (2022).Article 
PubMed 

Google Scholar 
Olivetti, E., Greiner, S. & Avesani, P. ADHD diagnosis from multiple data sources with batch effects. Front. Syst. Neurosci. 6, 70 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Gau, R. et al. Brainhack: developing a culture of open, inclusive, community-driven neuroscience. Neuron 109, 1769–1775 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Craddock, C. et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac). Front. Neuroinform. 42, 10–3389 (2013).
Google Scholar 
Glatard, T. et al. Boutiques: a flexible framework to integrate command-line applications in computing platforms. Gigascience 7, giy016 (2018).Amstutz, P. et al. Common Workflow Language, draft 3. https://doi.org/10.6084/m9.figshare.3115156.v1 (2016).Halchenko, Y. et al. DataLad: distributed system for joint management of code, data, and their relationship. J. Open Source Softw. 6, 3262 (2021).Article 
ADS 
PubMed 

Google Scholar 
Kiar, G. et al. Verificarlo/fuzzy: Fuzzy v0.5.0. https://doi.org/10.5281/zenodo.5027708 (2021).Chatelain, Y. et al. A numerical variability approach to results stability tests and its application to neuroimaging. arXiv [physics.med-ph] (2023).Gau, R. et al. COBIDAS checklist. Preprint at https://doi.org/10.17605/OSF.IO/ANVQY (2019).Salkind, N. J. (Ed.) Encyclopedia of research design. SAGE Publications, Inc., https://doi.org/10.4135/9781412961288 (2010).Gueorguieva, R. & Krystal, J. H. Move over ANOVA: progress in analyzing repeated-measures data and its reflection in papers published in the archives of general psychiatry. Arch. Gen. Psychiatry 61, 310–317 (2004).Article 
PubMed 

Google Scholar 
Simmons, J., Nelson, L. & Simonsohn, U. Pre‐registration: why and how. J. Consum. Psychol. 31, 151–162 (2021).Article 

Google Scholar 
Baribault, B. et al. Metastudies for robust tests of theory. Proc. Natl. Acad. Sci. USA 115, 2607–2612 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brandmaier, A. M. et al. Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED). Elife 7, e35718 (2018).Kiar, G., Chatelain, Y., Salari, A., Evans, A. C. & Glatard, T. Data augmentation through Monte Carlo arithmetic leads to more generalizable classification in connectomics. Neurons Behav. Data Theory https://doi.org/10.51628/001c.28328 (2021).Bellec, P., Rosa-Neto, P., Benali, H. & Evans, A. C. Multi-level bootstrap analysis of stable clusters (BASC) in resting-state fMRI. NeuroImage 47, S123 (2009).Nikolaidis, A. et al. Bagging improves reproducibility of functional parcellation of the human brain. Neuroimage 214, 116678 (2020).Article 
PubMed 

Google Scholar 
Doshi, J. et al. MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage 127, 186–195 (2016).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles