Non-invasive assessment of programmed cell death ligand-1 expression using 18F-FDG PET-CT imaging in esophageal squamous cell carcinoma

Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394–424. https://doi.org/10.3322/caac.21492 (2018).Article 
PubMed 

Google Scholar 
Lordick, F. et al. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27, v50–v57. https://doi.org/10.1093/annonc/mdw329 (2016).Article 
CAS 
PubMed 

Google Scholar 
Normann, M. C. et al. Early experiences with PD-1 inhibitor treatment of platinum resistant epithelial ovarian cancer. J Gynecol Oncol 30, e56. https://doi.org/10.3802/jgo.2019.30.e56 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. & Wu, X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Medicine 9, 8086–8121 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. Application of immune checkpoint targets in the anti-tumor novel drugs and traditional Chinese medicine development. Acta Pharmaceutica Sinica B 11, 2957–2972 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, Q., Qian, W., Sun, X. & Jiang, S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. Journal of Hematology & Oncology 15, 143 (2022).Article 
CAS 

Google Scholar 
Long, J. et al. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy. J Hematol Oncol 10, 146. https://doi.org/10.1186/s13045-017-0511-2 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nature Reviews Immunology 13, 309–320 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ai, L., Xu, A. & Xu, J. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Adv Exp Med Biol 1248, 33–59. https://doi.org/10.1007/978-981-15-3266-5_3 (2020).Article 
CAS 
PubMed 

Google Scholar 
Baba, Y. et al. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci 111, 3132–3141. https://doi.org/10.1111/cas.14541 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vivaldi, C. et al. Immune checkpoint inhibitors in esophageal cancers: Are we finally finding the right path in the mist? Int J Mol Sci 21.https://doi.org/10.3390/ijms21051658 (2020).Zhao, J. J. et al. Low programmed death-ligand 1–expressing subgroup outcomes of first-line immune checkpoint inhibitors in gastric or esophageal adenocarcinoma. Journal of Clinical Oncology 40, 392–402 (2022).Article 
CAS 
PubMed 

Google Scholar 
Stovgaard, E. et al. PD-L1 diagnostics in the neoadjuvant setting: implications of intratumoral heterogeneity of PD-L1 expression in triple negative breast cancer for assessment in small biopsies. Breast Cancer Research and Treatment 181, 553–560 (2020).Article 
CAS 
PubMed 

Google Scholar 
Huisman, M. C. et al. Quantification of PD-L1 expression with 18F-BMS-986192 PET/CT in patients with advanced-stage non–small cell lung cancer. Journal of Nuclear Medicine 61, 1455–1460 (2020).Article 
PubMed 

Google Scholar 
Wang, D., Li, Y., Chen, X. & Li, P. Prognostic significance of volume-based 18F-FDG PET/CT parameters and correlation with PD-L1 expression in patients with surgically resected lung adenocarcinoma. Medicine 100 (2021).Monaco, L. et al. The “digital biopsy” in non-small cell lung cancer (NSCLC): a pilot study to predict the PD-L1 status from radiomics features of [18F]FDG PET/CT. Eur J Nucl Med Mol Imaging 49, 3401–3411. https://doi.org/10.1007/s00259-022-05783-z (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, A. et al. Characterizing advanced breast cancer heterogeneity and treatment resistance through serial biopsies and comprehensive analytics. NPJ Precis Oncol 5, 28. https://doi.org/10.1038/s41698-021-00165-4 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, K. I. et al. Spatial and temporal heterogeneity of PD-L1 expression and tumor mutational burden in gastroesophageal adenocarcinoma at baseline diagnosis and after chemotherapy. Clinical Cancer Research 26, 6453–6463 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heo, Y. J. et al. PD-L1 expression in paired biopsies and surgical specimens in gastric adenocarcinoma: A digital image analysis study. Pathol Res Pract 218, 153338. https://doi.org/10.1016/j.prp.2020.153338 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, C. et al. Predicting EGFR and PD-L1 status in NSCLC patients using multitask AI system based on CT images. Frontiers in Immunology 13, 813072 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yoon, J. et al. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Thoracic Cancer 11, 993–1004 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gong, X.-Q. et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma. Scientific Reports 13, 7710 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kaira, K., Kuji, I. & Kagamu, H. Value of 18F-FDG-PET to predict PD-L1 expression and outcomes of PD-1 inhibition therapy in human cancers. Cancer Imaging 21, 1–9 (2021).Article 

Google Scholar 
Zhao, L., Liu, J., Wang, H. & Shi, J. Association between 18F-FDG metabolic activity and programmed death ligand-1 (PD-L1) expression using 22C3 immunohistochemistry assays in non-small cell lung cancer (NSCLC) resection specimens. The British Journal of Radiology 94, 20200397 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Mu, W. et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. Journal for immunotherapy of Cancer 9 (2021).Rice, T. W., Ishwaran, H., Ferguson, M. K., Blackstone, E. H. & Goldstraw, P. Cancer of the Esophagus and Esophagogastric junction: An eighth edition staging primer. J Thorac Oncol 12, 36–42. https://doi.org/10.1016/j.jtho.2016.10.016 (2017).Wang, T. A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso. PeerJ Computer Science 7, e732 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wu, X. et al. PD-L1 expression correlation with metabolic parameters of FDG PET/CT and clinicopathological characteristics in non-small cell lung cancer. EJNMMI Res 10, 51. https://doi.org/10.1186/s13550-020-00639-9 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuriyama, K. et al. Uptake of positron emission tomography tracers reflects the tumor immune status in esophageal squamous cell carcinoma. Cancer Sci 111, 1969–1978. https://doi.org/10.1111/cas.14421 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J., Ge, S., Sang, S., Hu, C. & Deng, S. Evaluation of PD-L1 expression level in patients with non-small cell lung cancer by 18F-FDG PET/CT radiomics and clinicopathological characteristics. Frontiers in Oncology 11, 789014 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, M. et al. Assessing PD-L1 expression level by radiomic features from PET/CT in nonsmall cell lung cancer patients: an initial result. Academic Radiology 27, 171–179 (2020).Article 
PubMed 

Google Scholar 
Zheng, Y.-M. et al. A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma. European Journal of Radiology 146, 110093 (2022).Article 
PubMed 

Google Scholar 
Paquet, N., Albert, A., Foidart, J. & Hustinx, R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med 45, 784–788 (2004).CAS 
PubMed 

Google Scholar 
Lowekamp, B. C., Chen, D. T., Ibáñez, L. & Blezek, D. The design of SimpleITK. Frontiers in Neuroinformatics 7, 45 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging 30, 1323–1341 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Van Griethuysen, J. J. et al. Computational radiomics system to decode the radiographic phenotype. Cancer Research 77, e104–e107 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5, 4006. https://doi.org/10.1038/ncomms5006 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel method for evaluating prediction models. Medical Decision Making 26, 565–574 (2006).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles