Near complete assembly of Pyricularia penniseti infecting Cenchrus grass identified its eight core chromosomes

Klaubauf, S. et al. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in mycology 79, 85–120, https://doi.org/10.1016/j.simyco.2014.09.004 (2014).Article 
CAS 
PubMed Central 

Google Scholar 
Zhang, N. et al. Generic names in Magnaporthales. IMA fungus 7, 155–159, https://doi.org/10.5598/imafungus.2016.07.01.09 (2016).Article 
PubMed Central 

Google Scholar 
Valent, B. The impact of blast disease: past, present, and future. Methods in molecular biology (Clifton, N.J.) 2356, 1–18, https://doi.org/10.1007/978-1-0716-1613-0_1 (2021).Article 
CAS 

Google Scholar 
Giraldo, M. C. & Valent, B. Filamentous plant pathogen effectors in action. Nature reviews. Microbiology 11, 800–814, https://doi.org/10.1038/nrmicro3119 (2013).Article 
CAS 

Google Scholar 
Oliveira-Garcia, E., Yan, X., Oses-Ruiz, M., de Paula, S. & Talbot, N. J. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. The New phytologist 241, 1007–1020, https://doi.org/10.1111/nph.19446 (2024).Article 
CAS 

Google Scholar 
Wei, Y. Y., Liang, S., Zhu, X. M., Liu, X. H. & Lin, F. C. Recent advances in effector research of Magnaporthe oryzae. Biomolecules 13, https://doi.org/10.3390/biom13111650 (2023).Bao, J. et al. PacBio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae. Molecular plant 10, 1465–1468, https://doi.org/10.1016/j.molp.2017.08.008 (2017).Article 
CAS 

Google Scholar 
Yoshida, K. et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC genomics 17, 370, https://doi.org/10.1186/s12864-016-2690-6 (2016).Article 
CAS 
PubMed Central 

Google Scholar 
Lin, L. et al. Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. mBio, e0008624, https://doi.org/10.1128/mbio.00086-24 (2024).Langner, T., Białas, A. & Kamoun, S. The blast fungus decoded: genomes in flux. mBio 9, https://doi.org/10.1128/mBio.00571-18 (2018).Gladieux, P. et al. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9, https://doi.org/10.1128/mBio.01219-17 (2018).Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986, https://doi.org/10.1038/nature03449 (2005).Article 
ADS 
CAS 

Google Scholar 
Dong, Y. et al. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS pathogens 11, e1004801, https://doi.org/10.1371/journal.ppat.1004801 (2015).Article 
CAS 

Google Scholar 
Zhong, Z. et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. The ISME journal 12, 1867–1878, https://doi.org/10.1038/s41396-018-0100-6 (2018).Article 
ADS 

Google Scholar 
Wang, Y. et al. Genome sequence of Magnaporthe oryzae EA18 virulent to multiple widely used rice varieties. Molecular plant-microbe interactions: MPMI 35, 727–730, https://doi.org/10.1094/mpmi-01-22-0030-a (2022).Article 
CAS 

Google Scholar 
Peng, Z. et al. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS genetics 15, e1008272, https://doi.org/10.1371/journal.pgen.1008272 (2019).Article 
CAS 

Google Scholar 
Langner, T. et al. Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS genetics 17, e1009386, https://doi.org/10.1371/journal.pgen.1009386 (2021).Article 
CAS 

Google Scholar 
Gómez Luciano, L. B. et al. Blast fungal genomes show frequent chromosomal changes, gene gains and losses, and effector gene turnover. Molecular biology and evolution 36, 1148–1161, https://doi.org/10.1093/molbev/msz045 (2019).Article 
CAS 

Google Scholar 
Li, Z. et al. First telomere-to-telomere gapless assembly of the rice blast fungus Pyricularia oryzae. Scientific data 11, 380, https://doi.org/10.1038/s41597-024-03209-z (2024).Article 
CAS 
PubMed Central 

Google Scholar 
Zheng, H. et al. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. Plant communications 4, 100633, https://doi.org/10.1016/j.xplc.2023.100633 (2023).Article 
CAS 
PubMed Central 

Google Scholar 
Zheng, H. et al. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC genomics 19, 927, https://doi.org/10.1186/s12864-018-5222-8 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research 27, 722–736, https://doi.org/10.1101/gr.215087.116 (2017).Article 
CAS 
PubMed Central 

Google Scholar 
Skinner, D. Z. et al. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 87, 545–557, https://doi.org/10.1007/bf00221877 (1993).Article 
CAS 

Google Scholar 
Rehmeyer, C. et al. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic acids research 34, 4685–4701, https://doi.org/10.1093/nar/gkl588 (2006).Article 
CAS 
PubMed Central 

Google Scholar 
Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics (Oxford, England) 36, 2253–2255, https://doi.org/10.1093/bioinformatics/btz891 (2020).Article 
CAS 

Google Scholar 
Brigati, C., Kurtz, S., Balderes, D., Vidali, G. & Shore, D. An essential yeast gene encoding a TTAGGG repeat-binding protein. Molecular and cellular biology 13, 1306–1314, https://doi.org/10.1128/mcb.13.2.1306-1314.1993 (1993).Article 
CAS 
PubMed Central 

Google Scholar 
Kanzaki, H. et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant journal: for cell and molecular biology 72, 894–907, https://doi.org/10.1111/j.1365-313X.2012.05110.x (2012).Article 
CAS 

Google Scholar 
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England) 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).Article 
CAS 

Google Scholar 
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR genomics and bioinformatics 3, lqaa108, https://doi.org/10.1093/nargab/lqaa108 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics (Oxford, England) 27, 757–763, https://doi.org/10.1093/bioinformatics/btr010 (2011).Article 
CAS 

Google Scholar 
Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR genomics and bioinformatics 2, lqaa026, https://doi.org/10.1093/nargab/lqaa026 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).Article 
ADS 
CAS 

Google Scholar 
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. 25, 4.10.11-14.10.14, https://doi.org/10.1002/0471250953.bi0410s25 (2009).Orbach, M. J., Chumley, F. G. & Valent, B. Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Molecular Plant-Microbe Interactions 9, 261–271 (1996).Article 
CAS 

Google Scholar 
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research 40, e49, https://doi.org/10.1093/nar/gkr1293 (2012).Article 
CAS 
PubMed Central 

Google Scholar 
Chen, C. et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular plant 16, 1733–1742, https://doi.org/10.1016/j.molp.2023.09.010 (2023).Article 
CAS 

Google Scholar 
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR30207900 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR30207899 (2024).NCBI Genbank https://identifiers.org/ncbi/insdc:JBGNXE000000000 (2024).

Hot Topics

Related Articles