Klaubauf, S. et al. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in mycology 79, 85–120, https://doi.org/10.1016/j.simyco.2014.09.004 (2014).Article
CAS
PubMed Central
Google Scholar
Zhang, N. et al. Generic names in Magnaporthales. IMA fungus 7, 155–159, https://doi.org/10.5598/imafungus.2016.07.01.09 (2016).Article
PubMed Central
Google Scholar
Valent, B. The impact of blast disease: past, present, and future. Methods in molecular biology (Clifton, N.J.) 2356, 1–18, https://doi.org/10.1007/978-1-0716-1613-0_1 (2021).Article
CAS
Google Scholar
Giraldo, M. C. & Valent, B. Filamentous plant pathogen effectors in action. Nature reviews. Microbiology 11, 800–814, https://doi.org/10.1038/nrmicro3119 (2013).Article
CAS
Google Scholar
Oliveira-Garcia, E., Yan, X., Oses-Ruiz, M., de Paula, S. & Talbot, N. J. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. The New phytologist 241, 1007–1020, https://doi.org/10.1111/nph.19446 (2024).Article
CAS
Google Scholar
Wei, Y. Y., Liang, S., Zhu, X. M., Liu, X. H. & Lin, F. C. Recent advances in effector research of Magnaporthe oryzae. Biomolecules 13, https://doi.org/10.3390/biom13111650 (2023).Bao, J. et al. PacBio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae. Molecular plant 10, 1465–1468, https://doi.org/10.1016/j.molp.2017.08.008 (2017).Article
CAS
Google Scholar
Yoshida, K. et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC genomics 17, 370, https://doi.org/10.1186/s12864-016-2690-6 (2016).Article
CAS
PubMed Central
Google Scholar
Lin, L. et al. Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. mBio, e0008624, https://doi.org/10.1128/mbio.00086-24 (2024).Langner, T., Białas, A. & Kamoun, S. The blast fungus decoded: genomes in flux. mBio 9, https://doi.org/10.1128/mBio.00571-18 (2018).Gladieux, P. et al. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9, https://doi.org/10.1128/mBio.01219-17 (2018).Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986, https://doi.org/10.1038/nature03449 (2005).Article
ADS
CAS
Google Scholar
Dong, Y. et al. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS pathogens 11, e1004801, https://doi.org/10.1371/journal.ppat.1004801 (2015).Article
CAS
Google Scholar
Zhong, Z. et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. The ISME journal 12, 1867–1878, https://doi.org/10.1038/s41396-018-0100-6 (2018).Article
ADS
Google Scholar
Wang, Y. et al. Genome sequence of Magnaporthe oryzae EA18 virulent to multiple widely used rice varieties. Molecular plant-microbe interactions: MPMI 35, 727–730, https://doi.org/10.1094/mpmi-01-22-0030-a (2022).Article
CAS
Google Scholar
Peng, Z. et al. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS genetics 15, e1008272, https://doi.org/10.1371/journal.pgen.1008272 (2019).Article
CAS
Google Scholar
Langner, T. et al. Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS genetics 17, e1009386, https://doi.org/10.1371/journal.pgen.1009386 (2021).Article
CAS
Google Scholar
Gómez Luciano, L. B. et al. Blast fungal genomes show frequent chromosomal changes, gene gains and losses, and effector gene turnover. Molecular biology and evolution 36, 1148–1161, https://doi.org/10.1093/molbev/msz045 (2019).Article
CAS
Google Scholar
Li, Z. et al. First telomere-to-telomere gapless assembly of the rice blast fungus Pyricularia oryzae. Scientific data 11, 380, https://doi.org/10.1038/s41597-024-03209-z (2024).Article
CAS
PubMed Central
Google Scholar
Zheng, H. et al. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. Plant communications 4, 100633, https://doi.org/10.1016/j.xplc.2023.100633 (2023).Article
CAS
PubMed Central
Google Scholar
Zheng, H. et al. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC genomics 19, 927, https://doi.org/10.1186/s12864-018-5222-8 (2018).Article
CAS
PubMed Central
Google Scholar
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research 27, 722–736, https://doi.org/10.1101/gr.215087.116 (2017).Article
CAS
PubMed Central
Google Scholar
Skinner, D. Z. et al. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 87, 545–557, https://doi.org/10.1007/bf00221877 (1993).Article
CAS
Google Scholar
Rehmeyer, C. et al. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic acids research 34, 4685–4701, https://doi.org/10.1093/nar/gkl588 (2006).Article
CAS
PubMed Central
Google Scholar
Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics (Oxford, England) 36, 2253–2255, https://doi.org/10.1093/bioinformatics/btz891 (2020).Article
CAS
Google Scholar
Brigati, C., Kurtz, S., Balderes, D., Vidali, G. & Shore, D. An essential yeast gene encoding a TTAGGG repeat-binding protein. Molecular and cellular biology 13, 1306–1314, https://doi.org/10.1128/mcb.13.2.1306-1314.1993 (1993).Article
CAS
PubMed Central
Google Scholar
Kanzaki, H. et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant journal: for cell and molecular biology 72, 894–907, https://doi.org/10.1111/j.1365-313X.2012.05110.x (2012).Article
CAS
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England) 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).Article
CAS
Google Scholar
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR genomics and bioinformatics 3, lqaa108, https://doi.org/10.1093/nargab/lqaa108 (2021).Article
CAS
PubMed Central
Google Scholar
Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics (Oxford, England) 27, 757–763, https://doi.org/10.1093/bioinformatics/btr010 (2011).Article
CAS
Google Scholar
Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR genomics and bioinformatics 2, lqaa026, https://doi.org/10.1093/nargab/lqaa026 (2020).Article
CAS
PubMed Central
Google Scholar
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).Article
ADS
CAS
Google Scholar
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. 25, 4.10.11-14.10.14, https://doi.org/10.1002/0471250953.bi0410s25 (2009).Orbach, M. J., Chumley, F. G. & Valent, B. Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Molecular Plant-Microbe Interactions 9, 261–271 (1996).Article
CAS
Google Scholar
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research 40, e49, https://doi.org/10.1093/nar/gkr1293 (2012).Article
CAS
PubMed Central
Google Scholar
Chen, C. et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular plant 16, 1733–1742, https://doi.org/10.1016/j.molp.2023.09.010 (2023).Article
CAS
Google Scholar
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR30207900 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR30207899 (2024).NCBI Genbank https://identifiers.org/ncbi/insdc:JBGNXE000000000 (2024).