Munnink, B. B. O. et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 26, 1405–1411 (2020).ArticleÂ
Google ScholarÂ
Houldcroft, C. J., Beale, M. A. & Breuer, J. Clinical and biological insights from viral genome sequencing. Nat. Rev. Microbiol. 15, 183–192 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Francis, R. V. et al. The impact of real-time whole-genome sequencing in controlling healthcare-associated SARS-CoV-2 outbreaks. J. Infect. Dis. 225, 10–18 (2022).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Vilsker, M. et al. Genome detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics 35, 871–873 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Minot, S. S., Krumm, N. & Greenfield, N. B. One codex: a sensitive and accurate data platform for genomic microbial identification. BioRxiv 027607 (2015).Flygare, S. et al. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol. 17, 1–18 (2016).ArticleÂ
Google ScholarÂ
Taxonomer. Taxonomer Page. https://taxonomer.iobio.io/ (Accessed 02 November 2023).Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13 (2019).ArticleÂ
Google ScholarÂ
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Cadenas-Castrejón, E., Verleyen, J., Boukadida, C., DÃaz-González, L. & Taboada, B. Evaluation of tools for taxonomic classification of viruses. Brief. Funct. Genom. 22, 31–41 (2023).ArticleÂ
Google ScholarÂ
Kroneman, A. et al. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 158, 2059–2068 (2013).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kroneman, A. et al. An automated genotyping tool for enteroviruses and noroviruses. J. Clin. Virol. 51, 121–125 (2011).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Kroneman, A., de Sousa, R., Verhoef, L., Koopmans, M. P. & Vennema, H. Usability of the international HAVNet hepatitis a virus database for geographical annotation, backtracing and outbreak detection. Eurosurveillance 23, 1700802 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Mulder, A. C. et al. HEVnet: a one health, collaborative, interdisciplinary network and sequence data repository for enhanced hepatitis E virus molecular typing, characterisation and epidemiological investigations. Eurosurveillance 24, 1800407 (2019).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016).ArticleÂ
Google ScholarÂ
Jansen, S. A. et al. Broad virus detection and variant discovery in fecal samples of hematopoietic transplant recipients using targeted sequence capture metagenomics. Front. Microbiol. 11, 560179 (2020).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Carbo, E. C. et al. Improved diagnosis of viral encephalitis in adult and pediatric hematological patients using viral metagenomics. J. Clin. Virol. 130, 104566 (2020).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).ArticleÂ
PubMedÂ
Google ScholarÂ
Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute. PLoS ONE 12, e0177459 (2017).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Schneider, V. A. et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 27, 849–864 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Broad Institute. Broad Institute GitHub Page for Picard. https://broadinstitute.github.io/picard/ (Accessed 06 October 2023).Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wheeler, D. L. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 36, D13–D21 (2007).ArticleÂ
ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rubino, F. & Creevey, C. MGkit Metagenomic framework for the study of microbial communities. Figshare Poste (2014).NCBI. NCBI FTP for new_taxdump. https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/ (Accessed 06 October 2023).Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bushnell, B. BBTools Software Package (2014).Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 40, 11189–11201 (2012).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 1–11 (2010).ArticleÂ
Google ScholarÂ
Quantopian. Quantopian GitHub Page. https://github.com/quantopian/qgrid (Accessed 06 October 2023).Bokeh. Bokeh Homepage. https://bokeh.pydata.org/en/latest/ (Accessed 06 October 2023).Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 1–10 (2011).ArticleÂ
Google ScholarÂ
Robinson, J. T., Thorvaldsdóttir, H., Turner, D. & Mesirov, J. P. igv.js: an embeddable JavaScript implementation of the integrative genomics viewer (IGV). Bioinformatics 39, 830 (2023).ArticleÂ
Google ScholarÂ
Kluyver, T. et al. Positioning and Power in Academic Publishing: Players, Agents and Agendas 87–90 (IOS, 2016).Ragan-Kelley, B. et al. Proceedings of the 17th Python in Science Conference 113–120 (eds. Akici, F.).IBM. IBM Spectrum LSF Suites Homepage. https://www.ibm.com/products/hpc-workload-management (Accessed 06 October 2023).Sched, M. D. Slurm Homepage. https://www.schedmd.com/ (Accessed 06 October 2023).Schmitz, D. et al. Metagenomic surveillance of viral gastroenteritis in a public health setting. Microbiol. Spectr. 11, e05022 (2023).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rivest, R. (Editor RFC, 1992).Fitzpatrick, P. daff GitHub Page. https://github.com/paulfitz/daff (Accessed 06 October 2023).de Vries, J. J. et al. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. J. Clin. Virol. 138, 104812 (2021).ArticleÂ
PubMedÂ
Google ScholarÂ
Brinkmann, A. et al. Proficiency testing of virus diagnostics based on bioinformatics analysis of simulated in silico high-throughput sequencing data sets. J. Clin. Microbiol. 57, 419. https://doi.org/10.1128/jcm.00466-00419 (2019).ArticleÂ
Google ScholarÂ
de Vries, J. J. et al. Benchmark of thirteen bioinformatic pipelines for metagenomic virus diagnostics using datasets from clinical samples. J. Clin. Virol. 141, 104908 (2021).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Nieroda, L. et al. iRODS metadata management for a cancer genome analysis workflow. BMC Bioinform. 20, 1–8 (2019).ArticleÂ
Google ScholarÂ
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 1–12 (2014).ArticleÂ
Google ScholarÂ
Kulakov, L. A., McAlister, M. B., Ogden, K. L., Larkin, M. J. & O’Hanlon, J. F. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl. Environ. Microbiol. 68, 1548–1555 (2002).ArticleÂ
ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
iRODS. iRODS Homepage. https://irods.org/ (Accessed 06 October 2023).Bodewes, R. et al. Molecular epidemiology of mumps viruses in the Netherlands, 2017–2019. PLoS ONE 15, e0233143 (2020).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Benschop, K. S. et al. Molecular epidemiology and evolutionary trajectory of emerging Echovirus 30, Europe. Emerg. Infect. Dis. 27, 1616 (2021).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Amid, C. et al. The COMPARE data hubs. Database 2019, 136 (2019).RIVM Bioinformatics Team. Juno GitHub Page. https://github.com/RIVM-bioinformatics/juno-assembly (Accessed 06 October 2023).