TCDDU-Net: combining transformer and convolutional dual-path decoding U-Net for retinal vessel segmentation

Medert, C. M., Sun, C. Q., Vanner, E., Parrish, R. K. & Wellik, S. R. The influence of etiology on surgical outcomes in neovascular glaucoma. BMC Ophthalmol. 21(1), 440. https://doi.org/10.1186/s12886-021-02212-x (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Sidhu, R. K., Sachdeva, J. & Katoch, D. Segmentation of retinal blood vessels by a novel hybrid technique- principal component analysis (PCA) and contrast limited adaptive histogram equalization (CLAHE). Microvasc. Res. 148, 104477. https://doi.org/10.1016/j.mvr.2023.104477 (2023).Article 
CAS 
PubMed 

Google Scholar 
Han, Z., Yin, Y., Meng, X., Yang, G. & Yan, X.: Blood vessel segmentation in pathological retinal image. in 2014 IEEE International Conference on Data Mining Workshop 960–967 (IEEE, 2014). https://doi.org/10.1109/ICDMW.2014.16Zhao, Y. et al. Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing 259, 201–209. https://doi.org/10.1016/j.neucom.2016.07.077 (2017).Article 

Google Scholar 
Wang, Y., Ji, G., Lin, P. & Trucco, E. Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46(8), 2117–2133. https://doi.org/10.1016/j.patcog.2012.12.014 (2013).Article 
ADS 

Google Scholar 
You, X., Peng, Q., Yuan, Y., Cheung, Y.-M. & Lei, J. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44(10–11), 2314–2324. https://doi.org/10.1016/j.patcog.2011.01.007 (2011).Article 
ADS 

Google Scholar 
Li, Y., Gong, H., Wu, W., Liu, G. & Chen, G. An automated method using hessian matrix and random walks for retinal blood vessel segmentation. in 2015 8th International Congress on Image and Signal Processing (CISP) 423–427 (IEEE, 2015). https://doi.org/10.1109/CISP.2015.7407917Imani, E., Javidi, M. & Pourreza, H.-R. Improvement of retinal blood vessel detection using morphological component analysis. Comput. Methods Programs Biomed. 118(3), 263–279. https://doi.org/10.1016/j.cmpb.2015.01.004 (2015).Article 
PubMed 

Google Scholar 
Shelhamer, E., Long, J. & Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651. https://doi.org/10.1109/TPAMI.2016.2572683 (2017).Article 
PubMed 

Google Scholar 
Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 (2017).Article 
PubMed 

Google Scholar 
Yang, M., Yu, K., Zhang, C., Li, Z. & Yang, K. DenseASPP for semantic segmentation in street scenes. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 3684–3692 (IEEE, 2018). https://doi.org/10.1109/CVPR.2018.00388Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv:1505.04597 (2015).Mlynarski, P., Delingette, H., Criminisi, A. & Ayache, N. 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput. Med. Imaging Graph. 73, 60–72. https://doi.org/10.1016/j.compmedimag.2019.02.001 (2019).Article 
PubMed 

Google Scholar 
Murugesan, B., Sarveswaran, K., Shankaranarayana, S. M., Ram, K., Joseph, J. & Sivaprakasam, M. Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation. in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 7223–7226 (IEEE, 2019). https://doi.org/10.1109/EMBC.2019.8857339Kamran, S. A., Hossain, K. F., Tavakkoli, A., Zuckerbrod, S. L., Sanders, K. M. & Baker, S. A. RV-GAN: Segmenting retinal vascular structure in fundus photographs using a novel multi-scale generative adversarial network. in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, proceedings, part VIII 24 vol. 12908 34–44 (2021). https://doi.org/10.1007/978-3-030-87237-3_4Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. & Polosukhin, I. Attention is all you need. arXiv:1706.03762 (2023).Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. & Houlsby, N. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2021).Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. & Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv:2103.14030 (2021).Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q. & Wang, M. Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv:2105.05537 (2021).Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L. Zhou, Y. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv:2102.04306 (2021).Xiao, X., Lian, S., Luo, Z. & Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation. in 2018 9th International Conference on Information Technology in Medicine and Education (ITME) 327–331 (IEEE, 2018). https://doi.org/10.1109/ITME.2018.00080Li, X. et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674. https://doi.org/10.1109/TMI.2018.2845918 (2018).Article 
PubMed 

Google Scholar 
Yan, Z., Yang, X. & Cheng, K.-T. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 65(9), 1912–1923. https://doi.org/10.1109/TBME.2018.2828137 (2018).Article 
PubMed 

Google Scholar 
Xia, H., Zhuge, R. & Li, H. Retinal vessel segmentation via a coarse-to-fine convolutional neural network. in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 1036–1039. (IEEE, 2018). https://doi.org/10.1109/BIBM.2018.8621352Guo, C., Szemenyei, M., Pei, Y., Yi, Y. & Zhou, W. SD-Unet: A structured dropout U-Net for retinal vessel segmentation. in 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE) 439–444 (IEEE, 2019). https://doi.org/10.1109/BIBE.2019.00085Li, X., Jiang, Y., Li, M. & Yin, S. Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans. Ind. Inf. 17(3), 1958–1967. https://doi.org/10.1109/TII.2020.2993842 (2021).Article 

Google Scholar 
Wu, H. et al. SCS-Net: A scale and context sensitive network for retinal vessel segmentation. Med. Image Anal. 70, 102025. https://doi.org/10.1016/j.media.2021.102025 (2021).Article 
PubMed 

Google Scholar 
Xu, G.-X. & Ren, C.-X.. SPNet: A novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss. arXiv:2202.09515 (2022).Zhang, M., Yu, F., Zhao, J., Zhang, L. & Li, Q. BEFD: Boundary enhancement and feature denoising for vessel segmentation. arXiv:2104.03768 (2021).Yang, L., Wang, H., Zeng, Q., Liu, Y. & Bian, G. A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing 448, 168–178. https://doi.org/10.1016/j.neucom.2021.03.085 (2021).Article 

Google Scholar 
Khan, T. M., Naqvi, S. S., Robles-Kelly, A. & Razzak, I. Retinal vessel segmentation via a multi-resolution contextual network and adversarial learning. Neural Netw. 165, 310–320. https://doi.org/10.1016/j.neunet.2023.05.029 (2023).Article 
PubMed 

Google Scholar 
Zhu, X., Li, W., Zhang, W., Li, D. & Li, H. A deformable network with attention mechanism for retinal vessel segmentation. J. Beijing Inst. Technol. 33(3), 186–193. https://doi.org/10.15918/j.jbit1004-0579.2024.050 (2024).Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2019).Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. & Jégou, H. Training data-efficient image transformers & distillation through attention. arXiv:2012.12877 (2021).Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P. & Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. in 2021 IEEE/CVF International Conference on Computer Vision (ICCV) 548–558 (IEEE, 2021). https://doi.org/10.1109/ICCV48922.2021.00061Han, K., Xiao, A., Wu, E., Guo, J., Xu, C. & Wang, Y. Transformer in transformer (2020). arXiv:2103.00112Yuan, Y., Zhang, Y., Zhu, L., Cai, L. & Qian, Y. Exploiting cross-scale attention transformer and progressive edge refinement for retinal vessel segmentation. Mathematics 12(2), 264. https://doi.org/10.3390/math12020264 (2024).Article 

Google Scholar 
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. & Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv:1910.10683 (2020).Li, X., Wang, W., Hu, X. & Yang, J. Selective kernel networks. arXiv:1903.06586 (2019).Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A. & Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509. https://doi.org/10.1109/TMI.2004.825627 (2004).Article 
PubMed 

Google Scholar 
Hoover, A. D., Kouznetsova, V. & Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210. https://doi.org/10.1109/42.845178 (2000).Article 
CAS 
PubMed 

Google Scholar 
Fraz, M. M. et al. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548. https://doi.org/10.1109/TBME.2012.2205687 (2012).Article 
PubMed 

Google Scholar 
Pizer, S. M. et al. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368. https://doi.org/10.1016/S0734-189X(87)80186-X (1987).Article 
ADS 

Google Scholar 
Yu, L. et al. A framework for hierarchical division of retinal vascular networks. Neurocomputing 392, 221–232. https://doi.org/10.1016/j.neucom.2018.11.113 (2020).Article 

Google Scholar 
Jin, Q. et al. DUNet: A deformable network for retinal vessel segmentation. Knowl. Based Syst. 178, 149–162. https://doi.org/10.1016/j.knosys.2019.04.025 (2019).Article 

Google Scholar 
Yan, Z., Yang, X. & Cheng, K.-T. A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J. Biomed. Health Inform. 23(4), 1427–1436. https://doi.org/10.1109/JBHI.2018.2872813 (2019).Article 
PubMed 

Google Scholar 
Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. & Liang, J. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867. https://doi.org/10.1109/TMI.2019.2959609 (2020).Article 
PubMed 

Google Scholar 
Wang, K., Zhang, X., Huang, S., Wang, Q. & Chen, F. CTF-Net: Retinal vessel segmentation via deep coarse-to-fine supervision network. in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) 1237–1241 (IEEE, 2020). https://doi.org/10.1109/ISBI45749.2020.9098742Feng, S., Zhuo, Z., Pan, D. & Tian, Q. CcNet: A cross-connected convolutional network for segmenting retinal vessels using multi-scale features. Neurocomputing 392, 268–276. https://doi.org/10.1016/j.neucom.2018.10.098 (2020).Article 

Google Scholar 

Hot Topics

Related Articles