Systems biology approaches identify metabolic signatures of dietary lifespan and healthspan across species

Wilson, K. A. et al. Evaluating the beneficial effects of dietary restrictions: a framework for precision nutrigeroscience. Cell Metab. 33, 2142–2173 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wilson, K. A. et al. GWAS for lifespan and decline in climbing ability in flies upon dietary restriction reveal decima as a mediator of insulin-like peptide production. Curr. Biol. 30, 2749–2760.e3 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Green, C. L. et al. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab. 34, 209–226.e5 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Jin, K. et al. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet. 16, 1–22 (2020).Article 

Google Scholar 
Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513–532 (2020).Article 
PubMed 

Google Scholar 
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).Article 
PubMed 

Google Scholar 
de Magalhães, J. P. Why genes extending lifespan in model organisms have not been consistently associated with human longevity and what it means to translation research. Cell Cycle 13, 2671–2673 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Broer, L. et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J. Gerontol. Ser. A 70, 110–118 (2015).Article 

Google Scholar 
Flachsbart, F. et al. Identification and characterization of two functional variants in the human longevity gene FOXO3. Nat. Commun. 8, 2063 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Xu, C. & Jackson, S. A. Machine learning and complex biological data. Genome Biol. 20, 76 (2019).Nelson, C. S. et al. Cross-phenotype association tests uncover genes mediating nutrient response in Drosophila. BMC Genomics 17, 867 (2016).Matsuki, K., Kuperman, V. & Van Dyke, J. A. The Random Forests statistical technique: an examination of its value for the study of reading. Sci. Stud. Read. 20, 20–33 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Tomaschek, F., Hendrix, P. & Baayen, R. H. Strategies for addressing collinearity in multivariate linguistic data. J. Phon. 71, 249–267 (2018).Article 

Google Scholar 
Kulesa, A., Krzywinski, M., Blainey, P., Altman, N. & Lever, J. Ensemble methods.: bagging random. Mach. Learn 14, 5–32 (2017).
Google Scholar 
Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7–15 (1989).Article 
MathSciNet 

Google Scholar 
Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9, e98679 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
HEBBACHI, A.-M., SEELAENDER, M. C. L., BAKER, P. W. & GIBBONS, G. F. Decreased secretion of very-low-density lipoprotein triacylglycerol and apolipoprotein B is associated with decreased intracellular triacylglycerol lipolysis in hepatocytes derived from rats fed orotic acid or n–3 fatty acids. Biochem. J. 325, 711–719 (1997).Article 
PubMed 
PubMed Central 

Google Scholar 
Miyazawa, S., Furuta, S. & Hashimoto, T. Reduction of beta-oxidation capacity of rat liver mitochondria by feeding orotic acid. Biochim. Biophys. Acta 711, 494–502 (1982).Article 
PubMed 

Google Scholar 
Zhou, S. et al. Systems genetics of the Drosophila metabolome. Genome Res. 30, 392–405 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Everett, L. J. et al. Gene expression networks in the drosophila genetic reference panel. Genome Res. 30, 485–496 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Rohde, P. D. et al. Article genotype and trait specific responses to rapamycin intake in drosophila melanogaster. Insects 12, 1–11 (2021).Article 

Google Scholar 
Zhao, X. et al. The metabolome as a biomarker of aging in Drosophila melanogaster. Aging Cell 21, e13548 (2022).Noberasco, G., Odetti, P., Boeri, D., Maiello, M. & Adezati, L. Malondialdehyde (MDA) level in diabetic subjects. Relationship with blood glucose and glycosylated hemoglobin. Biomed. Pharmacother. 45, 193–196 (1991).Article 
PubMed 

Google Scholar 
Moreto, F., De Oliveira, E. P., Manda, R. M. & Burini, R. C. The higher plasma malondialdehyde concentrations are determined by metabolic syndrome-related glucolipotoxicity. Oxid. Med. Cell. Longev. 2014, 505368 (2014).Jalees, S. S. & Rosaline, M. Study of malondialdehyde and estimation of blood glucose levels in patients with diabetes mellitus with cataract. 4, 319–323 (2017).Hachinohe, M. et al. A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS One 8, e54011 (2013).Treaster, S. B., Chaudhuri, A. R. & Austad, S. N. Longevity and GAPDH stability in bivalves and mammals: a convenient marker for comparative gerontology and proteostasis. PLoS One 10, 1–13 (2015).Article 

Google Scholar 
Landis, G. N. et al. Metabolic signatures of life span regulated by mating, sex peptide, and mifepristone/RU486 in female drosophila melanogaster. J. Gerontol. Ser. Biol. Sci. Med. Sci. 76, 195–204 (2021).
Google Scholar 
Lugo-Huitrón, R. et al. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid. Med. Cell. Longev. 2013, 104024 (2013).Castro-Portuguez, R. & Sutphin, G. L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol. 132, 110841 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lombardi, B., Pani, P. & Schlunk, F. F. Choline-deficiency fatty liver: impaired release of hepatic triglycerides. J. Lipid Res. 9, 437–446 (1968).Article 
PubMed 

Google Scholar 
Wu, G. et al. Choline deficiency attenuates body weight gain and improves glucose tolerance in ob/ob mice. J. Obes. 2012, 1–7 (2012).Article 

Google Scholar 
Emran, S., Yang, M., He, X., Zandveld, J. & Piper, M. D. W. Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration. Aging 6, 390–398 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Roe, A. J. et al. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am. J. Clin. Nutr. 105, 1283–1290 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ravichandran, M. et al. Impairing L-threonine catabolism promotes healthspan through methylglyoxal-mediated proteohormesis. Cell Metab. 27, 914–925.e5 (2018).Article 
PubMed 

Google Scholar 
Bayliak, M. M. et al. Dietary l-arginine accelerates pupation and promotes high protein levels but induces oxidative stress and reduces fecundity and life span in Drosophila melanogaster. J. Comp. Physiol. 188, 37–55 (2018).Article 

Google Scholar 
Canfield, C. A. & Bradshaw, P. C. Amino acids in the regulation of aging and aging-related diseases. Transl. Med. Aging 3, 70–89 (2019).Article 

Google Scholar 
Velazquez, R. et al. Lifelong choline supplementation ameliorates Alzheimer’s disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell 18, 1–11 (2019).Article 

Google Scholar 
Huang, J., Ladeiras, D., Yu, Y., Ming, X. F. & Yang, Z. Detrimental effects of chronic L-arginine rich food on aging kidney. Front. Pharmacol. 11, 1–13 (2021).Article 

Google Scholar 
Aon, M. A. et al. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab. 32, 100–116.e4 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Yap, Y. W. et al. Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nat. Commun. 11, 2894 (2020).Kim, J., Jo, Y., Cho, D. & Ryu, D. L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C. elegans. Nat. Commun. 13, 6554 (2022).Chen, J. et al. Threonine supplementation prevents the development of fat deposition in mice fed a high-fat diet. Food Funct. 13, 7772–7780 (2022).Article 
PubMed 

Google Scholar 
Yu, L. et al. The dietary branched-chain amino acids transition and risk of type 2 diabetes among chinese adults from 1997 to 2015: based on seven cross-sectional studies and a prospective cohort study. Front. Nutr. 9, 881847 (2022).Morze, J. et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care 45, 1013–024 (2022).Vangipurapu, J., Stancáková, A., Smith, U., Kuusisto, J. & Laakso, M. Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5,181 Finnish men. Diabetes 68, 1353–1358 (2019).Nichols, E. et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88 (2019).Article 

Google Scholar 
Solvang, S. E. H. et al. Kynurenine pathway metabolites in the blood and cerebrospinal fluid are associated with human aging. Oxid. Med. Cell. Longev. 2022, 5019752 (2022).Jové, M. et al. Plasma long-chain free fatty acids predict mammalian longevity. Sci. Rep. 3, 3346 (2013).Standerfer, S. B. & Handler, P. Fatty liver induced by orotic acid feeding. Exp. Biol. Med. 90, 270–271 (1955).Article 

Google Scholar 
Buang, Y., Wang, Y.-M., Cha, J.-Y., Nagao, K. & Yanagita, T. Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid. Nutrition 21, 867–873 (2005).Article 
PubMed 

Google Scholar 
Ferreira, A. V. M. et al. Fenofibrate prevents orotic acid—Induced hepatic steatosis in rats. Life Sci. 82, 876–883 (2008).Article 
PubMed 

Google Scholar 
Durschlag, R. P. & Robinson, J. L. Species specificity in the metabolic consequences of orotic acid consumption. J. Nutr. 110, 822–828 (1980).Article 
PubMed 

Google Scholar 
Jung, E.-J., Kwon, S.-W., Jung, B.-H., Oh, S.-H. & Lee, B.-H. Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver. J. Lipid Res. 52, 1617–1625 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 55, 44–53 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Bucaciuc Mracica, T. et al. MetaboAge DB: a repository of known ageing-related changes in the human metabolome. Biogerontology 21, 763–771 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Akagi, K. et al. Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster. PLoS Genet. 14, e1007777 (2018).Sharma, A. et al. Musashi expression in intestinal stem cells attenuates radiation-induced decline in intestinal permeability and survival in Drosophila. Sci. Rep. 10, 1–16 (2020).Article 

Google Scholar 
Katewa, S. D. et al. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in drosophila. Cell Metab. 23, 143–154 (2016).Article 
PubMed 

Google Scholar 
Seabold, S., Perktold, J. statsmodels: Econometric and statistical modeling with python. In: 9th Python in Science Conference (2010).Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 

Google Scholar 
Hagberg, A., Schult, D. & Swart, P. Exploring network structure, dynamics, and function using NetworkX. In: (eds. Varoquaux, G., Vaught, T. & Millman, J.) 11–15 (Pasadena, CA USA, (2008).Long, T. et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 49, 568–578 (2017).Article 
MathSciNet 
PubMed 

Google Scholar 
Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv https://doi.org/10.1101/2020.08.10.244293. (2020).Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Pilling, L. C. et al. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. Aging 9, 2504–2520 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Atkins, J. L. et al. A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell 20, e13459 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes article. Nat. Genet. 50, 559–571 (2018).Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018).Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752 (2011).Article 
PubMed 

Google Scholar 
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Greco M, F. D., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34, 2926–2940 (2015).Article 
MathSciNet 
PubMed 

Google Scholar 
Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int. J. Epidemiol. 47, 1264–1278 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326, 1614–1621 (2021).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles