Ubiquitin-related gene markers predict immunotherapy response and prognosis in patients with epithelial ovarian carcinoma

Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73 (1), 17–48 (2023).Article 

Google Scholar 
Gadducci, A. et al. Current strategies for the targeted treatment of high-grade serous epithelial ovarian cancer and relevance of BRCA mutational status. J. Ovarian Res. 12 (1), 9 (2019).Article 
PubMed Central 

Google Scholar 
Munoz-Galvan, S. et al. Downregulation of MYPT1 increases tumor resistance in ovarian cancer by targeting the Hippo pathway and increasing the stemness. Mol. Cancer. 19 (1), 7 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Asare-Werehene, M. et al. The exosome-mediated autocrine and paracrine actions of plasma gelsolin in ovarian cancer chemoresistance. Oncogene. 39 (7), 1600–1616 (2020).Article 
CAS 

Google Scholar 
Schwartz, A. L. & Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 49, 73–96 (2009).Article 
CAS 

Google Scholar 
Devoy, A., Soane, T., Welchman, R. & Mayer, R. J. The ubiquitin-proteasome system and cancer. Essays Biochem. 41, 187–203 (2005).Article 
CAS 

Google Scholar 
Hickey, C. M., Xie, Y. & Hochstrasser, M. DNA binding by the MATalpha2 transcription factor controls its access to alternative ubiquitin-modification pathways. Mol. Biol. Cell. 29 (5), 542–556 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 92 (3), 367–380 (1998).Article 
CAS 

Google Scholar 
Nath, D. & Shadan, S. The ubiquitin system. Nature. 458 (7237), 421 (2009).Article 
ADS 
CAS 

Google Scholar 
Rao, Z. & Ding, Y. Ubiquitin pathway and ovarian cancer. Curr. Oncol. 19 (6), 324–328 (2012).Article 
CAS 
PubMed Central 

Google Scholar 
Song, M. et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat. Commun. 11 (1), 6298 (2020).Article 
ADS 
MathSciNet 
CAS 
PubMed Central 

Google Scholar 
Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 39 (7), 928–944e926 (2021).Article 
CAS 

Google Scholar 
Jiang, Y., Wang, C. & Zhou, S. Targeting tumor microenvironment in ovarian cancer: Premise and promise. Biochim. Biophys. Acta Rev. Cancer. 1873 (2), 188361 (2020).Article 
CAS 

Google Scholar 
Kawamura, K., Komohara, Y., Takaishi, K., Katabuchi, H. & Takeya, M. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol. Int. 59 (5), 300–305 (2009).Article 

Google Scholar 
Xu, J. et al. Single-cell RNA sequencing reveals the tissue Architecture in Human High-Grade Serous Ovarian Cancer. Clin. Cancer Res. 28 (16), 3590–3602 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Zhang, T. et al. Lymphocyte and macrophage infiltration in omental metastases indicates poor prognosis in advance stage epithelial ovarian cancer. J. Int. Med. Res. 49 (12), 3000605211066245 (2021).Article 
ADS 
CAS 

Google Scholar 
Wahner Hendrickson, A. E. et al. Assessment of published models and prognostic variables in epithelial ovarian cancer at Mayo Clinic. Gynecol. Oncol. 137 (1), 77–85 (2015).Article 

Google Scholar 
Bodelon, C. et al. Molecular classification of epithelial ovarian Cancer based on methylation profiling: evidence for Survival Heterogeneity. Clin. Cancer Res. 25 (19), 5937–5946 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).Article 
CAS 
PubMed Central 

Google Scholar 
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28 (11), 1947–1951 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51 (D1), D587–d592 (2023).Article 
CAS 

Google Scholar 
Zwickl, P., Voges, D. & Baumeister, W. The proteasome: a macromolecular assembly designed for controlled proteolysis. Philos. Trans. R Soc. Lond. B Biol. Sci. 354 (1389), 1501–1511 (1999).Article 
CAS 
PubMed Central 

Google Scholar 
Wu, Y. et al. Development of an Individualized Ubiquitin Prognostic signature for Clear Cell Renal Cell Carcinoma. Front. Cell. Dev. Biol. 9, 684643 (2021).Article 
PubMed Central 

Google Scholar 
Chen, X. et al. Development of an ubiquitin-proteasome system signature for predicting prognosis and providing therapeutic guidance for patients with triple-negative breast cancer. J. Gene Med. 26(1):e3584. (2023).Ni, W. et al. Identification and validation of Ubiquitin-Specific proteases as a Novel Prognostic signature for Hepatocellular Carcinoma. Front. Oncol. 11, 629327 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Song, G. et al. Identification of a Ubiquitin related genes signature for Predicting prognosis of prostate Cancer. Front. Genet. 12, 778503 (2021).Article 
CAS 

Google Scholar 
Haase, M. & Fitze, G. HSP90AB1: helping the good and the bad. Gene. 575 (2 Pt 1), 171–186 (2016).Article 
CAS 

Google Scholar 
Nikishin, D. A. et al. Selection of stable expressed reference genes in native and vitrified/thawed human ovarian tissue for analysis by qRT-PCR and Western blot. J. Assist. Reprod. Genet. 35 (10), 1851–1860 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Hussain, S. et al. F-box only protein 9 and its role in cancer. Mol. Biol. Rep. 49 (2), 1537–1544 (2022).Article 
CAS 

Google Scholar 
Foulkes, W. D., Ragoussis, J., Stamp, G. W., Allan, G. J. & Trowsdale, J. Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br. J. Cancer. 67 (3), 551–559 (1993).Article 
CAS 
PubMed Central 

Google Scholar 
Xu, Q. et al. Sigma-1 receptor (σ1R) is downregulated in hepatic malignant tumors and regulates HepG2 cell proliferation, migration and apoptosis. Oncol. Rep. 39 (3), 1405–1413 (2018).CAS 

Google Scholar 
Koti, M. et al. A distinct pre-existing inflammatory tumour microenvironment is associated with chemotherapy resistance in high-grade serous epithelial ovarian cancer. Br. J. Cancer. 112 (7), 1215–1222 (2015).Article 
CAS 
PubMed Central 

Google Scholar 
Au, K. K. et al. STAT1-associated intratumoural T(H)1 immunity predicts chemotherapy resistance in high-grade serous ovarian cancer. J. Pathol. Clin. Res. 2 (4), 259–270 (2016).Article 
CAS 
PubMed Central 

Google Scholar 
Josahkian, J. A. et al. Increased STAT1 expression in high Grade Serous Ovarian Cancer is Associated with a better outcome. Int. J. Gynecol. Cancer. 28 (3), 459–465 (2018).Article 

Google Scholar 
Li, X., Wang, F., Xu, X., Zhang, J. & Xu, G. The dual role of STAT1 in Ovarian Cancer: insight into Molecular mechanisms and Application potentials. Front. Cell. Dev. Biol. 9, 636595 (2021).Article 
PubMed Central 

Google Scholar 
Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21 (4), 687–692 (2015).Article 
CAS 

Google Scholar 
Meissl, K., Macho-Maschler, S., Müller, M. & Strobl, B. The good and the bad faces of STAT1 in solid tumours. Cytokine. 89, 12–20 (2017).Article 
CAS 

Google Scholar 
Jin, Y. et al. IL-21 reinvigorates exhausted natural killer cells in patients with HBV-associated hepatocellular carcinoma in STAT1-depedent pathway. Int. Immunopharmacol. 70, 1–8 (2019).Article 
CAS 

Google Scholar 
Osterberg, L. et al. Potential predictive markers of chemotherapy resistance in stage III ovarian serous carcinomas. BMC Cancer. 9, 368 (2009).Article 
PubMed Central 

Google Scholar 
Menyhárt, O., Fekete, J. T. & Győrffy, B. Gene expression indicates altered Immune Modulation and Signaling Pathway Activation in Ovarian Cancer patients resistant to Topotecan. Int. J. Mol. Sci. 20(11), 2750 (2019).Zhang, L. et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol. Cancer. 18 (1), 144 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Huang, T. et al. Autophagy and Hallmarks of Cancer. Crit. Rev. Oncog. 23 (5–6), 247–267 (2018).Article 
PubMed Central 

Google Scholar 
Segala, G. et al. Vps11 and Vps18 of Vps-C membrane traffic complexes are E3 ubiquitin ligases and fine-tune signalling. Nat. Commun. 10 (1), 1833 (2019).Article 
ADS 
PubMed Central 

Google Scholar 
D’Arca, D. et al. Serum Mass Spectrometry Proteomics and Protein Set Identification in response to FOLFOX-4 in drug-resistant ovarian carcinoma. Cancers (Basel) 15(2), 412 (2023).Lin, Y. R., Yang, W. J. & Yang, G. W. Prognostic and immunological potential of PPM1G in hepatocellular carcinoma. Aging (Albany NY). 13 (9), 12929–12954 (2021).Article 
CAS 

Google Scholar 
Di, C. et al. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell. Death Differ. 26 (7), 1181–1194 (2019).Article 
CAS 

Google Scholar 
Radeva, M. Y., Kugelmann, D., Spindler, V. & Waschke, J. PKA compartmentalization via AKAP220 and AKAP12 contributes to endothelial barrier regulation. PLoS One. 9 (9), e106733 (2014).Article 
ADS 
PubMed Central 

Google Scholar 
Liang, Q. et al. Pan-cancer analysis of the prognosis and immunological role of AKAP12: a potential biomarker for resistance to anti-VEGF inhibitors. Front. Genet. 13, 943006 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Goel, R. K. & Lukong, K. E. Understanding the cellular roles of fyn-related kinase (FRK): implications in cancer biology. Cancer Metastasis Rev. 35 (2), 179–199 (2016).Article 
CAS 

Google Scholar 
Brauer, P. M. & Tyner, A. L. RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK. Cell. Cycle. 8 (17), 2728–2732 (2009).Article 
CAS 

Google Scholar 
Yu, X. Z. et al. TRIM44 facilitates ovarian cancer proliferation, migration, and invasion by inhibiting FRK. Neoplasma. 68 (4), 751–759 (2021).Article 
CAS 

Google Scholar 
Altemus, M. A. et al. Breast cancers utilize hypoxic glycogen stores via PYGB, the brain isoform of glycogen phosphorylase, to promote metastatic phenotypes. PLoS One. 14 (9), e0220973 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Wang, Z., Han, G., Liu, Q., Zhang, W. & Wang, J. Silencing of PYGB suppresses growth and promotes the apoptosis of prostate cancer cells via the NF–κB/Nrf2 signaling pathway. Mol. Med. Rep. 18 (4), 3800–3808 (2018).CAS 
PubMed Central 

Google Scholar 
Shimada, S., Shiomori, K., Tashima, S., Tsuruta, J. & Ogawa, M. Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’ colorectal carcinomas. Br. J. Cancer. 84 (11), 1497–1504 (2001).Article 
CAS 
PubMed Central 

Google Scholar 
Tashima, S., Shimada, S., Yamaguchi, K., Tsuruta, J. & Ogawa, M. Expression of brain-type glycogen phosphorylase is a potentially novel early biomarker in the carcinogenesis of human colorectal carcinomas. Am. J. Gastroenterol. 95 (1), 255–263 (2000).Article 
CAS 

Google Scholar 
Takashi, M., Koshikawa, T., Kurobe, N. & Kato, K. Elevated concentrations of brain-type glycogen phosphorylase in renal cell carcinoma. Jpn J. Cancer Res. 80 (10), 975–980 (1989).Article 
CAS 
PubMed Central 

Google Scholar 
Shimada, S., Tashima, S., Yamaguchi, K., Matsuzaki, H. & Ogawa, M. Carcinogenesis of intestinal-type gastric cancer and colorectal cancer is commonly accompanied by expression of brain (fetal)-type glycogen phosphorylase. J. Exp. Clin. Cancer Res. 18 (1), 111–118 (1999).CAS 

Google Scholar 
Zhou, Y., Jin, Z. & Wang, C. Glycogen phosphorylase B promotes ovarian cancer progression via Wnt/β-catenin signaling and is regulated by miR-133a-3p. Biomed. Pharmacother. 120, 109449 (2019).Article 
CAS 

Google Scholar 
Murai, J. Targeting DNA repair and replication stress in the treatment of ovarian cancer. Int. J. Clin. Oncol. 22 (4), 619–628 (2017).Article 
CAS 

Google Scholar 
Nayak, A. P., Kapur, A., Barroilhet, L. & Patankar, M. S. Oxidative phosphorylation: a target for Novel therapeutic strategies against ovarian Cancer. Cancers (Basel) 10(9), 337 (2018).Huang, W. et al. Proteasome inhibitor YSY01A enhances cisplatin cytotoxicity in cisplatin-resistant human ovarian Cancer cells. J. Cancer. 7 (9), 1133–1141 (2016).Article 
CAS 
PubMed Central 

Google Scholar 
Bazzaro, M. et al. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Res. 66 (7), 3754–3763 (2006).Article 
CAS 

Google Scholar 
Klinck, R. et al. Multiple alternative splicing markers for ovarian cancer. Cancer Res. 68 (3), 657–663 (2008).Article 
CAS 

Google Scholar 
Pawlak, G. & Helfman, D. M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr. Opin. Genet. Dev. 11 (1), 41–47 (2001).Article 
CAS 

Google Scholar 
Provenzano, P. P. & Keely, P. J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and rho GTPase signaling. J. Cell. Sci. 124 (Pt 8), 1195–1205 (2011).Article 
CAS 
PubMed Central 

Google Scholar 
Ayollo, D. V., Zhitnyak, I. Y., Vasiliev, J. M. & Gloushankova, N. A. Rearrangements of the actin cytoskeleton and e-cadherin-based adherens junctions caused by neoplasic transformation change cell-cell interactions. PLoS One. 4 (11), e8027 (2009).Article 
ADS 
PubMed Central 

Google Scholar 
Luo, X. et al. Identification of a Prognostic Signature for Ovarian Cancer Based on Ubiquitin-Related Genes Suggesting a Potential Role for FBXO9. Biomolecules ; 13(12). (2023).Song, G. Q. et al. The necroptosis signature and molecular mechanism of lung squamous cell carcinoma. Aging (Albany NY). 15 (22), 12907–12926 (2023).Article 
CAS 

Google Scholar 
Olingy, C. E., Dinh, H. Q. & Hedrick, C. C. Monocyte heterogeneity and functions in cancer. J. Leukoc. Biol. 106 (2), 309–322 (2019).Article 
CAS 

Google Scholar 
Almeida-Nunes, D. L., Mendes-Frias, A., Silvestre, R., Dinis-Oliveira, R. J. & Ricardo, S. Immune Tumor Microenvironment in Ovarian Cancer Ascites. Int J Mol Sci ; 23(18). (2022).Nowak, M. & Klink, M. The role of Tumor-Associated macrophages in the Progression and Chemoresistance of Ovarian Cancer. Cells 9(5), 1299 (2020).Addeo, A., Friedlaender, A., Banna, G. L. & Weiss, G. J. TMB or not TMB as a biomarker: that is the question. Crit. Rev. Oncol. Hematol. 163, 103374 (2021).Article 

Google Scholar 
Wu, H. X. et al. Tumor mutational and indel burden: a systematic pan-cancer evaluation as prognostic biomarkers. Ann. Transl Med. 7 (22), 640 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Marcus, L. et al. FDA approval Summary: Pembrolizumab for the treatment of Tumor Mutational Burden-High Solid tumors. Clin. Cancer Res. 27 (17), 4685–4689 (2021).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell. 39 (2), 154–173 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles