Ketone body oxidation and susceptibility to ethyl acetoacetate in a novel hemolytic multidrug-resistant strain Leptospira interrogans KeTo originated from sewage water

Matiz-Gonzalez, J. M. et al. Genetic diversity of P1/pathogenic Leptospira species hosted by bats worldwide. Zoonoses Public Health https://doi.org/10.1111/zph.13126 (2024).Article 
PubMed 

Google Scholar 
Vincent, A. T. et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis. 13, e0007270. https://doi.org/10.1371/journal.pntd.0007270 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Othman, S. et al. A versatile isothermal amplification assay for the detection of leptospires from various sample types. PeerJ 10, e12850. https://doi.org/10.7717/peerj.12850 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Philip, N. et al. Leptospira interrogans and Leptospirakirschneri are the dominant Leptospira species causing human leptospirosis in Central Malaysia. PLoS Negl. Trop. Dis. 14, e0008197. https://doi.org/10.1371/journal.pntd.0008197 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rezende Mires de Carvalho, R. et al. Biofilm formation in vitro by Leptospira interrogans strains isolated from naturally infected dogs and their role in antimicrobial resistance. Heliyon 9, e13802. https://doi.org/10.1016/j.heliyon.2023.e13802 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ackermann, K. et al. In vivo biofilm formation of pathogenic Leptospira spp. in the vitreous humor of horses with recurrent uveitis. Microorganisms https://doi.org/10.3390/microorganisms9091915 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Brihuega, B., Samartino, L., Auteri, C., Venzano, A. & Caimi, K. In vivo cell aggregations of a recent swine biofilm-forming isolate of Leptospira interrogans strain from Argentina. Rev. Argent Microbiol 44, 138–143 (2012).PubMed 

Google Scholar 
Soares, P. M. et al. Serological and molecular characterization of Leptospira kirschneri serogroup Grippotyphosa isolated from bovine in Brazil. Microb. Pathog. 138, 103803. https://doi.org/10.1016/j.micpath.2019.103803 (2020).Article 
CAS 
PubMed 

Google Scholar 
Santos, A. A. N. et al. Leptospira interrogans biofilm formation in Rattus norvegicus (Norway rats) natural reservoirs. PLoS Negl. Trop. Dis. 15, e0009736. https://doi.org/10.1371/journal.pntd.0009736 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Barbosa, C., Martins, G. & Lilenbaum, W. Atypical virulence of Leptospira kirschneri serogroup Icterohaemorrhagiae isolated from capybaras (Hydrochoerus hydrochaeris) in hamster model. Microb. Pathog. 126, 134–137. https://doi.org/10.1016/j.micpath.2018.10.032 (2019).Article 
PubMed 

Google Scholar 
Harran, E. et al. Identification of pathogenic Leptospira kirschneri serogroup Grippotyphosa in water voles (Arvicola terrestris) from Ruminant Pastures in Puy-de-Dome, Central France. Pathogens https://doi.org/10.3390/pathogens12020260 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Webb, J. K., Keller, K. A., Sander, S. J., Allender, M. C. & Sheldon, J. D. Clinical disease and treatment of Leptospira kirschneri sv Grippotyphosa in a Sumatran tiger (Panthera tigris sumatrae). J. Am. Vet. Med. Assoc. 260, 1–6. https://doi.org/10.2460/javma.21.04.0185 (2022).Article 
PubMed 

Google Scholar 
Faine, S. & Stallman, N. D. Amended Descriptions of the Genus Leptospira Noguchi 1917 and the Species L. interrogans (Stimson 1907) Wenyon 1926 and L. biflexa (Wolbach and Binger 1914) Noguchi 1918. IJSEM https://doi.org/10.1099/00207713-32-4-461 (1982).Article 

Google Scholar 
Ramadass, P., Jarvis, B. D., Corner, R. J., Penny, D. & Marshall, R. B. Genetic characterization of pathogenic Leptospira species by DNA hybridization. Int. J. Syst. Bacteriol. 42, 215–219. https://doi.org/10.1099/00207713-42-2-215 (1992).Article 
CAS 
PubMed 

Google Scholar 
Riesco, R. & Trujillo, M. E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.006300 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Petakh, P. & Kamyshnyi, O. AMR mechanisms in L. interrogans serovars: a comprehensive study. Front. Cell. Infect. Microbiol. 14, 1384427. https://doi.org/10.3389/fcimb.2024.1384427 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jaeger, L. H. et al. Genomic characterization and comparative analysis of Leptospira kirschneri serogroup Grippotyphosa UC5/2011, a strain isolated after mare abortion: Implications for genital animal leptospirosis. Comp. Immunol. Microbiol. Infect. Dis. 64, 7–9. https://doi.org/10.1016/j.cimid.2019.01.019 (2019).Article 
PubMed 

Google Scholar 
Trott, D. J., Abraham, S. & Adler, B. Antimicrobial resistance in Leptospira, Brucella, and other rarely investigated veterinary and zoonotic pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.ARBA-0029-2017 (2018).Article 
PubMed 

Google Scholar 
Meganathan, Y., Vishwakarma, A. & Ramya, M. Biofilm formation and social interaction of Leptospira in natural and artificial environments. Res. Microbiol. 173, 103981. https://doi.org/10.1016/j.resmic.2022.103981 (2022).Article 
CAS 
PubMed 

Google Scholar 
Vinod Kumar, K. et al. In vitro antimicrobial susceptibility of pathogenic Leptospira biofilm. Microb. Drug Resist. 22, 511–514. https://doi.org/10.1089/mdr.2015.0284 (2016).Article 
CAS 
PubMed 

Google Scholar 
Narayanavari, S. A., Lourdault, K., Sritharan, M., Haake, D. A. & Matsunaga, J. Role of sph2 gene regulation in hemolytic and sphingomyelinase activities produced by Leptospira interrogans. PLoS Negl. Trop. Dis. 9, e0003952. https://doi.org/10.1371/journal.pntd.0003952 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Picardeau, M. Virulence of the zoonotic agent of leptospirosis: still terra incognita?. Nat. Rev. Microbiol. 15, 297–307. https://doi.org/10.1038/nrmicro.2017.5 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ko, A. I., Goarant, C. & Picardeau, M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 7, 736–747. https://doi.org/10.1038/nrmicro2208 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thibeaux, R. et al. The zoonotic pathogen Leptospira interrogans mitigates environmental stress through cyclic-di-GMP-controlled biofilm production. NPJ Biofilms Microbiomes 6, 24. https://doi.org/10.1038/s41522-020-0134-1 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nau, L. H., Obiegala, A., Krol, N., Mayer-Scholl, A. & Pfeffer, M. Survival time of Leptospira kirschneri serovar Grippotyphosa under different environmental conditions. PLoS One 15, e0236007. https://doi.org/10.1371/journal.pone.0236007 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bourhy, P., Collet, L., Brisse, S. & Picardeau, M. Leptospira mayottensis sp. Nov., a pathogenic species of the genus Leptospira isolated from humans. Int. J. Syst. Evol. Microbiol. 64, 4061–4067. https://doi.org/10.1099/ijs.0.066597-0 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashaiba, A., Arun, A. B., Sudhakara Prasad, K. & Tellis, R. C. A clinical pilot study for the detection of sphingomyelinase in leptospirosis patient’s urine at tertiary care hospital. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e21138 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Manglicmot-Yabes, A. G., Villanueva, S. Y. A. M. & Gloriani, N. G. Carbon utilization phenome of Leptospira interrogans serovar Manilae strain K64. Life Sci. Med. Biomed. https://doi.org/10.28916/lsmb.5.10.2021.76 (2021).Article 

Google Scholar 
Cotter, D. G., d’Avignon, D. A., Wentz, A. E., Weber, M. L. & Crawford, P. A. Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J. Biol. Chem. 286, 6902–6910. https://doi.org/10.1074/jbc.M110.192369 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bailey, E. & Lockwood, E. A. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat. Enzyme 15, 239–253. https://doi.org/10.1159/000481063 (1973).Article 
CAS 
PubMed 

Google Scholar 
Hawkins, R. A., Williamson, D. H. & Krebs, H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem. J. 122, 13–18. https://doi.org/10.1042/bj1220013 (1971).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krebs, H. A. The biochemical lesion in ketosis. Arch. Intern. Med. 107, 51–62. https://doi.org/10.1001/archinte.1961.03620010055010 (1961).Article 
CAS 
PubMed 

Google Scholar 
Corthesy-Theulaz, I. E. et al. Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family. J. Biol. Chem. 272, 25659–25667. https://doi.org/10.1074/jbc.272.41.25659 (1997).Article 
CAS 
PubMed 

Google Scholar 
Hasegawa, S., Ikeda, Y., Yamasaki, M. & Fukui, T. The role of acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, in 3T3-L1 adipocyte differentiation. Biol. Pharm. Bull. 35, 1980–1985. https://doi.org/10.1248/bpb.b12-00435 (2012).Article 
CAS 
PubMed 

Google Scholar 
Chaurasia, R. & Sritharan, M. Cytotoxicity of the 42 kDa SMase C sphingomyelinase secreted by Leptospira interrogans serovar Pomona on Vero cells. Microbiology (Reading) 166, 1065–1073. https://doi.org/10.1099/mic.0.000976 (2020).Article 
CAS 
PubMed 

Google Scholar 
Horne, S. M. & Pruss, B. M. A wash of ethyl acetoacetate reduces externally added Salmonella enterica on tomatoes. Antibiotics (Basel) https://doi.org/10.3390/antibiotics11081134 (2022).Article 
PubMed 

Google Scholar 
Horne, S. M., Schroeder, M., Murphy, J. & Prubeta, B. M. Acetoacetate and ethyl acetoacetate as novel inhibitors of bacterial biofilm. Lett. Appl. Microbiol. 66, 329–339. https://doi.org/10.1111/lam.12852 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gomes, T. et al. Impact of extracellular DNA on architectural parameters of Leptospira biflexa biofilm. Indian J. Microbiol. 63, 373–379. https://doi.org/10.1007/s12088-023-01085-6 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Horne, S. M., Ugrinov, A. & Prubeta, B. M. The food anti-microbials beta-phenylethylamine (-HCl) and ethyl acetoacetate do not change during the heating process. Antibiotics (Basel) https://doi.org/10.3390/antibiotics10040418 (2021).Article 
PubMed 

Google Scholar 
Riemenschneider, W. B., Hermann M. Esters, Organic. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007.o17_o02 (2005).Edwards, U., Rogall, T., Blocker, H., Emde, M. & Bottger, E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853. https://doi.org/10.1093/nar/17.19.7843 (1989).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233–3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997 (1997).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, X. & Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 9, 868–877. https://doi.org/10.1101/gr.9.9.868 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617. https://doi.org/10.1099/ijsem.0.001755 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. https://doi.org/10.1093/bioinformatics/btv033 (2015).Article 
CAS 
PubMed 

Google Scholar 
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164. https://doi.org/10.1093/bioinformatics/btz188 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L. & Goker, M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 50, D801–D807. https://doi.org/10.1093/nar/gkab902 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lee, I., Ouk Kim, Y., Park, S. C. & Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103. https://doi.org/10.1099/ijsem.0.000760 (2016).Article 
CAS 
PubMed 

Google Scholar 
Olson, R. D. et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51, D678–D689. https://doi.org/10.1093/nar/gkac1003 (2023).Article 
CAS 
PubMed 

Google Scholar 
Grant, J. R., Arantes, A. S. & Stothard, P. Comparing thousands of circular genomes using the CGView comparison tool. BMC Genomics 13, 202. https://doi.org/10.1186/1471-2164-13-202 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grant, J. R. et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51, W484–W492. https://doi.org/10.1093/nar/gkad326 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Comstock JP, G. A. K. I. W. H., Hall WD, Hurst JW, editors. . Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; Chapter 140. Available from: https://www.ncbi.nlm.nih.gov/books/NBK247/. (1990).A, S. Detection and Spectrophotometric Determination of Organic Functional Groups With Special Reference to Carbonyl Compounds. Thesis (1986).Stepanović, S., Vuković, D., Dakić, I., Savić, B. & Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbio. Methods 40, 175–179. https://doi.org/10.1016/S0167-7012(00)00122-6 (2000).Article 

Google Scholar 
Neelakandan, P. et al. Volatile 1-octanol of tea (Camellia sinensis L.) fuels cell division and indole-3-acetic acid production in phylloplane isolate Pseudomonas sp. NEEL19. Sci. Rep. 11, 2788. https://doi.org/10.1038/s41598-021-82442-7 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles