Beta vulgaris L. beetroot protects against iron-induced liver injury by restoring antioxidant pathways and regulating cellular functions

Dillard, C. J. & German, J. B. Phytochemicals: nutraceuticals and human health. J. Sci. Food. Agric. 80 (12), 1744–1756. https://doi.org/10.1002/1097-0010(20000915) (2000).Article 
CAS 

Google Scholar 
de Oliveira, S. P. A., do Nascimento, H. M. A., Sampaio, K. B. & de Souza, E. L. A review on bioactive compounds of beet (Beta vulgaris L. subsp. Vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Crit. Rev. Food Sci. Nutr. 61 (12), 2022–2033. https://doi.org/10.1080/10408398.2020.1768510 (2021).Article 
CAS 
PubMed 

Google Scholar 
Edziri, H. et al. Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L. South. Afr. J. Bot. 126, 170–175. https://doi.org/10.1016/j.sajb.2019.01.017 (2019).Article 
CAS 

Google Scholar 
Abarna, S. et al. Beetroot betalains and antioxidant potential: a function of Maturity Stage. Natl. Acad. Sci. Lett. 46, 457–460 (2023).Article 
CAS 

Google Scholar 
Carrillo, C. et al. Antioxidant capacity of Beetroot: traditional vs novel approaches. Plant. Foods Hum. Nutr. 72, 266–273 (2017).Article 
CAS 
PubMed 

Google Scholar 
Abarna, S. et al. Betalains Stability and antioxidant activity of Beetroots: as a function of Maturity Stage. Sugar Tech. 26 (1), 77–86 (2024).Article 

Google Scholar 
Erukainure, O. et al. Cannabis sativa L. (var. indica) Exhibits Hepatoprotective Effects by Modulating Hepatic Lipid Profile and Mitigating Gluconeogenesis and Cholinergic Dysfunction in Oxidative Hepatic Injury. Front. Pharmacol. Frontiers in pharmacology, https://doi.org/10.3389/fphar.2021.705402 (2021).Brzezińska-Rojek, J. et al. Antioxidant capacity, Nitrite and Nitrate content in beetroot-based dietary supplements. Foods. 12, 1017 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Mirmiran, P. et al. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. (Lond). 17, 3 (2020).Article 
PubMed 

Google Scholar 
Anderson, E. R. & Shah, Y. M. Iron homeostasis in the liver. Compr. Physiol. 3 (1), 315–330 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., Hady, E. & S Antioxidant and structure–activity relationships (SARs) of several phenolic and aniline compounds. Annals Agricultural Sci. 58 (2), 173–181. https://doi.org/10.1016/j.aoas.2013.07.002 (2013).Article 

Google Scholar 
Al-Harbi, L. N. et al. Beta vulgaris L. (Beetroot) Methanolic Extract Prevents Hepatic Steatosis and Liver Damage in T2DM Rats by Hypoglycemic, Insulin-Sensitizing, Antioxidant Effects, and Upregulation of PPARα. Biology, 10, 1306. (2021).El-Gendy, H. F. et al. Trial for decreasing ifosfamide-induced beetroot extract-induced hematological toxicity, oxidative stress, inflammation, and hepatotoxicity in male albino rats. Comp. Clin. Pathol. 31, 699–712 (2022).Article 
CAS 

Google Scholar 
Lorizolam, I. M. et al. Beet stalks and leaves (< i > Beta vulgaris L.) protect Against High-Fat Diet-Induced oxidative damage in the liver in mice. Nutrients. 10 (7), E872 (2018).Article 

Google Scholar 
Bashir, R. et al. Bioactive profile, pharmacological attributes and potential application of Beta vulgaris. Food Measure. 18, 3732–3743 (2024).Article 

Google Scholar 
Rehman, S., Mufti, I. U., Ain, Q. U. & Ijaz, B. in Bioactive Compounds and Biological Activities of Red Beetroot (Beta vulgaris L). Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry (eds Murthy, H. N., Paek, K. Y. & Park, S. Y.) (Springer, 2024). https://doi.org/10.1007/978-3-031-29006-0_42-1Asgary, S. et al. Improvement of hypertension, endothelial function and systemic inflammation following short-term supplementation with red beet (Beta vulgaris L.) juice: a randomized crossover pilot study. J. Hum. Hypertens. 30, 627–632. https://doi.org/10.1038/jhh.2016.34 (2016).Article 
CAS 
PubMed 

Google Scholar 
Tavarini, S. & Angelini, L. G. Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J. Sci. Food Agricµlture. 93 (9), 2121–2129 (2013).Article 
CAS 

Google Scholar 
Zhao, H. X., Zhang, H. S. & Yang, S. F. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness. 3 (3–4), 183–190. https://doi.org/10.1016/j.fshw.2014.12.005 (2014).Article 

Google Scholar 
Ojo, O. A. et al. Antidiabetic activity of avocado seeds (Persea americana Mill.) In diabetic rats via activation of PI3K/AKT signaling pathway. Sci. Rep. 12, 2919. https://doi.org/10.1038/s41598-022-07015-8 (2022a).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zielińska-Przyjemska, M. et al. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils. Phytother. Res. 26 (6), 845–852. https://doi.org/10.1002/ptr.3649 (2012).Article 
CAS 
PubMed 

Google Scholar 
Babagil, A., Tasgin, E., Nadaroglu, H. & Kaymak, H. C. Antioxidant and antiradical activity of beetroot (Beta vulgaris L. var. conditiva Alef.) grown using different fertilizers. Journal of Chemistry, 2018, Article ID 7101605. Doi: (2018). https://doi.org/10.1155/2018/7101605Spiegel, M., Gamian, A. & Sroka, Z. Antiradical activity of beetroot (Beta vulgaris L.) Betalains. Molecules, 26(9), p.2439. (2021). https://doi.org/10.3390/molecules26092439Jimoh, M. O., Afolayan, A. J. & Lewu, F. B. Suitability of Amaranthus species for alleviating human dietary deficiencies. South. Afr. J. Bot. 115, 65–73. https://doi.org/10.1016/j.sajb.2018.01.004 (2018).Article 
CAS 

Google Scholar 
Taira, J., Tsuchida, E., Katoh, M. C., Uehara, M. & Ogi, T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem. 166, 531–536. https://doi.org/10.1016/j.foodchem.2014.05.102 (2015).Article 
CAS 
PubMed 

Google Scholar 
Santos, J. S., Brizola, V. R. A. & Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: a proposal and application. Food Chem. 214, 515–522. https://doi.org/10.1016/j.foodchem.2016.07.091 (2017).Article 
CAS 
PubMed 

Google Scholar 
Canabady-Rochelle, L. L. et al. Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods. Food Chem. 183, 129–135. https://doi.org/10.1016/j.foodchem.2015.02.147 (2015).Article 
CAS 
PubMed 

Google Scholar 
Cherrak, S. A. et al. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PloS One, 11(10), p.e0165575. (2016). https://doi.org/10.1371/journal.pone.0165575Peng, Y., Wang, C., Xu, H. H., Liu, Y. N. & Zhou, F. Binding of α-synuclein with Fe (III) and with Fe (II) and biological implications of the resultant complexes. J. Inorg. Biochem. 104 (4), 365–370 (2010).Article 
CAS 
PubMed 

Google Scholar 
Cassagnes, L. E. et al. The catalytically active copper-amyloid‐beta state: coordination site responsible for reactive oxygen species production. Angew. Chem. Int. Ed. 52 (42), 11110–11113. https://doi.org/10.1002/anie.201305372 (2013).Article 
CAS 

Google Scholar 
Miotto, M. C. et al. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson’s disease. Inorg. Chem. 53 (9), 4350–4358. https://doi.org/10.1021/ic4031377 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cheignon, C., Faller, P., Testemale, D., Hureau, C. & Collin, F. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production. Metallomics. 8 (10), 1081–1089. https://doi.org/10.1039/c6mt00150e (2016).Article 
CAS 
PubMed 

Google Scholar 
Hasanuzzaman, M. et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), p.384. (2019).Rector, R. S. et al. Mitochondrial dysfunction precedes insµLin resistance and hepatic steatosis and contributes to the natural history of nonalcoholic fatty liver disease in an obese rodent model. J. Hepatol. 52 (5), 727–736 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cichoż-Lach, H. & Michalak, A. Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology: WJG, 20(25), p.8082. (2014).Aseervatham, G. S. B., Ananth, D. A. & Sivasudha, T. The liver: oxidative stress and dietary antioxidants. In The Liver (239–246). Academic. (2018).Grohmann, M. et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell. 175 (5), 1289–1306. https://doi.org/10.1016/j.cell.2018.09.053 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ul-Haq, I., Butt, M. S., Randhawa, M. A. & Shahid, M. Hepatoprotective effects of red beetroot-based beverages against CCl4‐induced hepatic stress in Sprague Dawley rats. Journal of Food Biochemistry, 43(12), p.e13057. (2019). https://doi.org/10.1111/jfbc.13057Albrahim, T. & Alonazi, M. A. Role of beetroot (Beta vulgaris) juice on chronic nanotoxicity of silver nanoparticle-induced hepatotoxicity in male rats. International Journal of Nanomedicine, 15, p.3471.  (2020). https://doi.org/10.2147/IJN.S248078Shaban, N. Z. et al. The synergistic hepatoprotective potential of Beta vulgaris juice and 2,3-dimercaptosuccinic acid in lead-intoxicated rats by improving the hepatic oxidative and inflammatory stress. BMC Complementary Medicine and Therapies, 20(1), pp.1–15.  (2020). https://doi.org/10.1186/s12906-020-03056-6Al-Harbi, L. N. et al. Beta vulgaris L. (Beetroot) methanolic extract prevents hepatic steatosis and liver damage in T2DM rats by hypoglycemic, insulin-sensitizing, antioxidant effects, and upregulation of PPARα. Biology, 10(12), p.1306.  (2021). https://doi.org/10.3390/biology10121306Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49 (11), 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsatsakis, A. M. et al. Hormetic neurobehavioral effects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food Chem. Toxicol. 125, 141–149. https://doi.org/10.1016/j.fct.2018.12.043 (2019).Article 
CAS 
PubMed 

Google Scholar 
Erukainure, O. L., Matsabisa, M. G., Salau, V. F., Erhabor, J. O. & Islam, M. Cannabis sativa L. mitigates oxidative stress and cholinergic dysfunction; and modµLates carbohydrate metabolic perturbation in oxidative testicular injury. Comp. Clin. Pathol. 30 (2), 241–253. https://doi.org/10.1007/s00580-021-03200-9 (2021a).Article 
CAS 

Google Scholar 
Ojo, O. A. et al. Chromatographic fingerprint analysis, antioxidant properties, and inhibition of cholinergic enzymes (acetylcholinesterase and butyrylcholinesterase) of phenolic extracts from Irvingia gabonensis (aubry-Lecomte ex O’Rorke) baill bark. J. Basic Clin. Physiol. Pharmacol. 29 (2), 217–224. https://doi.org/10.1515/jbcpp-2017-0063 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ojo, O. A. et al. Antidiabetic activity of elephant grass (Cenchrus purpureus (Schumach.) Morrone) via activation of PI3K/AkT signaling pathway, oxidative stress inhibition, and apoptosis in Wistar rats. Front. Pharmacol. 651. https://doi.org/10.3389/fphar.2022.845196 (2022).Erukainure, O. et al. Cannabis sativa L. (var. indica) Exhibits hepatoprotective effects by modulating hepatic lipid profile and mitigating gluconeogenesis and cholinergic dysfunction in oxidative hepatic injury. Frontiers in Pharmacology, 12.  (2021). https://doi.org/10.3389/fphar.2021.705402Del Campo, J. A., Gallego, P. & Grande, L. Role of inflammatory response in liver diseases: Therapeutic strategies. World Journal of Hepatology, 10(1), p.1. (2018).Shaked, I. et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity. 31 (6), 965–973. https://doi.org/10.1016/j.immuni.2009.09.019 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wang, T. et al. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats. Toxicol. Appl. Pharmcol. 280 (1), 169–176. https://doi.org/10.1016/j.taap.2014.06.011 (2014).Article 
CAS 

Google Scholar 
Huang, Z. et al. From purines to purinergic signaling: molecular functions and human diseases. Signal. Transduct. Target. Therapy. 6 (1), 1–20. https://doi.org/10.1038/s41392-021-00553-z (2021).Article 
CAS 

Google Scholar 
Gnad, T. et al. Adenosine/A2B receptor signaling ameliorates the effects of aging and counteracts obesity. Cell Metabol. 32 (1), 56–70. https://doi.org/10.1016/j.cmet.2020.06.006 (2020).Article 
CAS 

Google Scholar 
Jain, S. & Jacobson, K. A. Purinergic signaling in diabetes and metabolism. Biochemical Pharmacology, 187, p.114393.  (2021). https://doi.org/10.1016/j.bcp.2020.114393Rui, L. Energy metabolism in the liver. Comprehensive Physiology, 4(1), p.177. (2014).Sun, X. et al. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/ENTPD1 null mice. Hepatology. 57 (1), 205–216 (2013).Article 
CAS 
PubMed 

Google Scholar 
Salau, V. F. et al. FerµLic acid modµLates dysfunctional metabolic pathways and purinergic activities, while stalling redox imbalance and cholinergic activities in oxidative brain injury. Neurotox. Res. 37 (4), 944–955. https://doi.org/10.1007/s12640-019-00099-7 (2020).Article 
CAS 
PubMed 

Google Scholar 
Sunny, N. E., Parks, E. J., Browning, J. D. & Burgess, S. C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metabol. 14 (6), 804–810. https://doi.org/10.1016/j.cmet.2011.11.004 (2011).Article 
CAS 

Google Scholar 
Erukainure, O. L., Oyebode, O. A., Ibeji, C. U., Koorbanally, N. A. & Islam, M. Vernonia Amygdalina Del. stimulated glucose uptake in brain tissues enhances antioxidative activities; and modµLates functional chemistry and dysregulated metabolic pathways. Metab. Brain Dis. 34 (3), 721–732. https://doi.org/10.1007/s11011-018-0363-7 (2019).Article 
CAS 
PubMed 

Google Scholar 
Luo, X., Wu, J., Jing, S. & Yan, L. J. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Disease. 7 (1), 90. https://doi.org/10.14336/AD.2015.0702 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Gutiérrez, R. M., Muñiz-Ramirez, A., Garcia-Campoy, A. H. & Mota Flores, J. M. Evaluation of the antidiabetic potential of extracts of Urtica dioica, Apium graveolens, and Zingiber officinale in mice, zebrafish, and pancreatic β-Cell. Plants. 10, 1438. https://doi.org/10.3390/plants10071438 (2021).Article 
CAS 

Google Scholar 
Aljamal, J. A. & Badawneh, M. Vitro vitro inhibition of human erythrocyte hexokinase by various hyperglycemic drugs. J. Biochem. Mol. Toxicol. 31 (8), e21910. https://doi.org/10.1002/jbt.21910 (2017).Article 
CAS 

Google Scholar 
Erukainure, O. L., Sanni, O. & Islam, M. M. Clerodendrum Volubile:phenolics and applications to Health, in: (eds Watson, R., Preedy, V. & Zibadi, S.) Polyphenols: Mechanisms of Action in Human Health and Disease. Elsevier, Amsterdam, Netherlands. Doi:https://doi.org/10.1016/b978-0-12-813006-3.00006-4. (2018).Chapter 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Idrees, S. et al. In silico sequence analysis, homology modeling and function annotation of Ocimum basilicum hypothetical protein G1CT28_OCIBA. International Journal Bioautomation, 16(2), 111. (2012).Rost, B., Yachdav, G. & Liu, J. The predictprotein server. Nucleic Acids Res. 32 (suppl_2), W321–W326. https://doi.org/10.1093/nar/gkh377 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ho, B. K. & Brasseur, R. The Ramachandran plots of glycine and preproline. BMC Struct. Biol. 5 (1), 1–11. https://doi.org/10.1186/1472-6807-5-14 (2005).Article 
CAS 

Google Scholar 
Westergaard, N. & Madsen, P. Glucose-6-phosphatase inhibitors for the treatment of type 2 diabetes. Expert Opin. Ther. Pat. 11 (9), 1429–1441 (2001).Article 

Google Scholar 
Baginski, E. S., Foà, P. P. & Zak, B. Glucose-6-phosphatase. In Methods of Enzymatic Analysis (876–880). Academic. (1974).Singh, M., Pande, S. & Battu, S. Medicinal uses of L-lysine: past and future. (2011).Katada, S., Watanabe, T., Mizuno, T., Kobayashi, S., Takeshita, M., Osaki, N., … Katsuragi,Y. (2018). Effects of chlorogenic acid-enriched and hydroxyhydroquinone-reduced coffee on postprandial fat oxidation and antioxidative capacity in healthy men: A randomized,double-blind, placebo-controlled, crossover trial. Nutrients, 10(4), 525.Ogawa, H., Shinoda, T., Cornelius, F. & Toyoshima, C. Crystal structure of the sodium-potassium pump (Na+, K+-ATPase) with bound potassium and ouabain. Proc. Natl. Acad. Sci. 106 (33), 13742–13747 (2009).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ziqubu, K. et al. Isoorientin: a dietary flavone with the potential to ameliorate diverse metabolic complications. Pharmacol. Res. 158, 104867 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ojo, A. B. et al. Syzygium aromaticum (L.) Merr. & L.M.Perry mitigates iron-mediated oxidative brain injury by modulation of redox imbalance, cholinergic and purinergic dysfunctions, and glucose metabolizing enzymes activities. Journal of Molecular Structure 1268 C (2022) 133675 (2022). https://doi.org/10.1016/j.molstruc.2022.133675Sundar, S., Thangamani, L., Manivel, G., Kumar, P. & Piramanayagam, S. Molecular docking, molecular dynamics and MM/PBSA studies of FDA approved drugs for protein kinase a of Mycobacterium tuberculosis; application insights of drug repurposing. Inf. Med. Unlocked. 16, 100210 (2019).Article 

Google Scholar 
Chen, D. et al. Regulation of protein–ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2(3), e1501240. (2016).Alam, M. N., Bristi, N. J. & Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21, 143–152 (2013).Article 
PubMed 

Google Scholar 
Mzoughi, Z. et al. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res. Int. 119, 612–621. https://doi.org/10.1016/j.foodres.2018.10.039 (2019).Article 
CAS 
PubMed 

Google Scholar 
Olofinsan, K. A., Salau, V. F., Erukainure, O. L. & Islam, M. S. Ocimum tenuiflorum mitigates iron-induced testicµLar toxicity via modulation of redox imbalance, cholinergic and purinergic dysfunctions, and glucose metabolizing enzymes activities. Andrologia. 53, e14179. https://doi.org/10.1111/and.14179 (2021).Article 
CAS 
PubMed 

Google Scholar 
Rahman, M. M., Islam, M. B., Biswas, M. & Khurshid Alam, A. H. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes. 8, 621. https://doi.org/10.1186/s13104-015-1618-6 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Erukainure, O. L. et al. Buddleja saligna Willd (Loganiaceae) inhibits angiotensin-converting enzyme activity in oxidative cardiopathy with concomitant modµLation of nucleotide hydrolyzing enzymatic activities and dysregµLated lipid metabolic pathways. J. Ethnopharmacol. 248, 112358. https://doi.org/10.1016/j.jep.2019.112358 (2020).Article 
CAS 
PubMed 

Google Scholar 
Salau, V. F., Erukainure, O. L. & Islam, M. Caffeic acid protects against iron-induced cardiotoxicity by suppressing angiotensin-converting enzyme activity and modulating lipid spectrum, gluconeogenesis and nucleotide hydrolyzing enzyme activities. Biol. Trace Elem. Res. 199, 1052–1061. https://doi.org/10.1007/s12011-020-02227-3 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ajiboye, B. O., Oyinloye, B. E., Agboinghale, P. E. & Ojo, O. A. Cnidoscolus aconitifolius (Mill.) IM Johnst leaf extract prevents oxidative hepatic injury and improves muscle glucose uptake ex vivo. J. Food Biochem. 43, e13065. https://doi.org/10.1111/jfbc.13065 (2019).Article 
PubMed 

Google Scholar 
Erukainure, O. L., Mopuri, R., Oyebode, O. A., Koorbanally, N. A. & Islam, M. S. Dacryodes edµLis enhances antioxidant activities, suppresses DNA fragmentation in oxidative pancreatic and hepatic injuries; and inhibits carbohydrate digestive enzymes linked to type 2 diabetes. Biomed. Pharmacother. 96, 37–47. https://doi.org/10.1016/j.biopha.2017.09.106 (2017).Article 
CAS 
PubMed 

Google Scholar 
Balogun, F. O. & Ashafa, A. O. T. Aqueous root extracts of Dicoma anomala (Sond.) Extenuates postprandial hyperglycemia in vitro and its modulation on the activities of carbohydrate-metabolizing enzymes in streptozotocin-induced diabetic Wistar rats. South. Afr. J. Bot. 112, 102–111. https://doi.org/10.1016/j.sajb.2017.05.014 (2017).Article 
CAS 

Google Scholar 
Ambrose, G. O., Afees, O. J., Oluwaseun, A. S., Terkuma, C. & Iorwuese, M. Silico Sequence Analhomologymmodelingdelinfunctionaltannotationtation of Farnesyl Diphossynthasenthase (FDS) of Azadirachta indica. J. Appl. Bioinforma Comput. Biol. 7, 2 (2018).Article 

Google Scholar 
BIOVIA Discovery Studio. : a comprehensive predictive science application for life sciences. San Diego, CA, USA. (2017). R2 http://accelrys.com/products/collaborativescience/biovia-discovery-studioAbraham, M. J. et al. (2015).GROMACS. High-performance molecular simulations through mµLti-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25 .Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18 (12), 1463–1472 (1997).Article 
CAS 

Google Scholar 
Essmann, U. et al. A smooth particle mesh via the Ewald method. J. Chem. Phys. 103 (19), 8577–8593 (1995).Article 
ADS 
CAS 

Google Scholar 

Hot Topics

Related Articles