Building pangenome graphs | Nature Methods

Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature Biotechnol. 36, 875–879 (2018).Article 
CAS 

Google Scholar 
Paten, B., Novak, A. M., Eizenga, J. M. & Garrison, E. Genome graphs and the evolution of genome inference. Genome Res. 27, 665–676 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Armstrong, J. et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guarracino, A., Heumos, S., Nahnsen, S., Prins, P. & Garrison, E. ODGI: understanding pangenome graphs. Bioinformatics 38, 3319–3326 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H., Feng, X. & Chu, C. The design and construction of reference pangenome graphs with minigraph. Genome Biol. https://doi.org/10.1186/s13059-020-02168-z (2020).Hickey, G. et al. Pangenome graph construction from genome alignments with minigraph-cactus. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01793-w (2023).Noll, N., Molari, M., Shaw, L. P. & Neher, R. A. PanGraph: scalable bacterial pan-genome graph construction. Preprint at bioRxiv https://doi.org/10.1099/mgen.0.001034 (2022).Garrison, E. & Guarracino, A. Unbiased pangenome graphs. Bioinformatics https://doi.org/10.1093/bioinformatics/btac743 (2022).Minkin, I., Pham, S. & Medvedev, P. TwoPaCo: an efficient algorithm to build the compacted de bruijn graph from many complete genomes. Bioinformatics 33, 4024–4032 (2016).Article 

Google Scholar 
Chin, C.-S. et al. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods 20, 1213–1221 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sullivan, P. F. et al. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science https://doi.org/10.1126/science.abn2937 (2023).Guarracino, A., Mwaniki, N., Marco-Sola, S. & Garrison, E. wfmash: whole-chromosome pairwise alignment using the hierarchical wavefront algorithm. GitHub https://github.com/waveygang/wfmash (2021).Lee, C., Grasso, C. & Sharlow, M. F. Multiple sequence alignment using partial order graphs. Bioinformatics 18, 452–464 (2002).Article 
CAS 
PubMed 

Google Scholar 
Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, Y. et al. abPOA: an SIMD-based c library for fast partial order alignment using adaptive band. Bioinformatics 37, 2209–2211 (2020).Article 

Google Scholar 
Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bolognini, D. et al. Global diversity, recurrent evolution, and recent selection on amylase structural haplotypes in humans https://doi.org/10.1101/2024.02.07.579378 (2024).Heumos, S. et al. Pangenome graph layout by path-guided stochastic gradient descent. Bioinformatics 40, 363 (2024).Article 

Google Scholar 
Doerr, D., Marijon, P. & Marschall, T. GFAffix identifies walk-preserving shared affixes in variation graphs and collapses them into a non-redundant graph structure. GitHub https://github.com/marschall-lab/GFAffix (2023).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. Multiqc: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marco-Sola, S. et al. Optimal gap-affine alignment in o(s) space. Bioinformatics https://doi.org/10.1093/bioinformatics/btad074 (2023).Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, 1005944 (2018).Article 

Google Scholar 
Cagan, A. et al. Natural selection in the great apes. Mol. Biol. Evol. 33, 3268–3283 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guarracino, A. et al. Recombination between heterologous human acrocentric chromosomes. Nature 617, 335–343 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Crysnanto, D., Leonard, A. & Pausch, H. Comparison of methods for building pangenome graphs. In Proc. 12th World Congress on Genetics Applied to Livestock Production (WCGALP) Technical and Species Orientated Innovations in Animal Breeding, and Contribution of Genetics to Solving Societal Challenges, 1066–1069 (Wageningen Academic Publishers, 2022).Leonard, A. S., Crysnanto, D., Mapel, X. M., Bhati, M. & Pausch, H. Graph construction method impacts variation representation and analyses in a bovine super-pangenome. Preprint at bioRxiv https://doi.org/10.1186/s13059-023-02969-y (2022).Zhou, Y. et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527–534 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heumos, S. et al. nf-core/pangenome. Zenodo https://doi.org/10.5281/zenodo.8202637 (2024).Fischer, C. & Garrison, E. chfi/gfaestus: a pangenome graph browser. Zenodo https://doi.org/10.5281/zenodo.6954035 (2022).Logsdon, G. A. et al. The structure, function and evolution of a complete human chromosome 8. Nature 593, 101–107 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Llamas, B. et al. A strategy for building and using a human reference pangenome. F1000Res 8, 1751 (2021).Article 
PubMed Central 

Google Scholar 
Vollger, M. R. et al. Increased mutation and gene conversion within human segmental duplications. Nature 617, 325–334 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Traag, V. A., Waltman, L. & van Eck, N. J. From louvain to leiden: guaranteeing well-connected communities. Sci. Rep. 9, 1–22 (2019).Article 
CAS 

Google Scholar 
Kosugi, S. et al. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 20, 1–18 (2019).Article 

Google Scholar 
Poplin, R. et al. A universal snp and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).Article 
CAS 
PubMed 

Google Scholar 
Guarracino, A. Pangenomes of multiple species for the “Building pangenome graphs” publication. Zenodo 10.5281/zenodo.7658895 (2023).

Hot Topics

Related Articles