A meta-analysis of bulk RNA-seq datasets identifies potential biomarkers and repurposable therapeutics against Alzheimer’s disease

Bagyinszky, E., Giau, V. V. & An, S. A. Transcriptomics in Alzheimer’s Disease: aspects and challenges. Int. J. Mol. Sci. 21(10), 3517. https://doi.org/10.3390/ijms21103517 (2020).Busche, M. A. & Hyman, B. T. Synergy between amyloid-β and tau in Alzheimer’s disease, Nat. Neurosci. 23(10), 1183–1193 https://doi.org/10.1038/s41593-020-0687-6 (2020).Alzheimer’s Association Calcium Hypothesis Workgroup and & Khachaturian, Z. S. Calcium hypothesis of Alzheimer’s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement. 13(2), 178. https://doi.org/10.1016/j.jalz.2016.12.006 (2017).Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9(7), 702–716. https://doi.org/10.1016/S1474-4422(10)70119-8 (2010).Breijyeh, Z. & Karaman, R. Comprehensive Review on Alzheimer’s Disease: causes and treatment. Molecules. 25(24), 5789. https://doi.org/10.3390/molecules25245789 (2020).Alzheimer’s Association, W., Thies & Bleiler, L. 2013 Alzheimer’s disease facts and figures, Alzheimers Dement. 9(2), 208–245, (2013). https://doi.org/10.1016/j.jalz.2013.02.003Prince, M. et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9(1), 63. https://doi.org/10.1016/j.jalz.2012.11.007 (Jan. 2013).Jones, R. S., Chow, T. W. & Gatz, M. Asian Americans and Alzheimer’s disease: Assimilation, culture, and beliefs, J. Aging Stud., 20(1), 11–25 https://doi.org/10.1016/j.jaging.2005.01.001 (2006).Chan, K. Y. et al. Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet. 381(9882), 2016–2023. https://doi.org/10.1016/S0140-6736(13)60221-4 (2013).Wu, Y. T. et al. Jun., The changing prevalence and incidence of dementia over time—current evidence, Nat. Rev. Neurol., 13(6), 327–339 https://doi.org/10.1038/nrneurol.2017.63 (2017).Rahman, M. R., Tajmim, A., Ali, M. & Sharif, M. Overview and Current Status of Alzheimer’s Disease in Bangladesh, J. Alzheimers Dis. Rep., 1(1), 27–42 https://doi.org/10.3233/ADR-170012 (2017).Abdullah, M. N., Wah, Y. B., Abdul Majeed, A. B., Zakaria, Y. & Shaadan, N. Identification of blood-based transcriptomics biomarkers for Alzheimer’s disease using statistical and machine learning classifier. Inf. Med. Unlocked. 33, 101083. https://doi.org/10.1016/j.imu.2022.101083 (2022).Article 

Google Scholar 
Giau, V., Senanarong, V., Bagyinszky, E., An, S. & Kim, S. Analysis of 50 neurodegenerative genes in clinically diagnosed early-Onset Alzheimer’s Disease. Int. J. Mol. Sci. 20(6), 1514. https://doi.org/10.3390/ijms20061514 (2019).Giau, V. V. et al. Genetic analyses of early-onset Alzheimer’s disease using next generation sequencing, Sci. Rep., 9(1), 8368, https://doi.org/10.1038/s41598-019-44848-2 (2019).Annese, A. et al. Whole transcriptome profiling of late-onset Alzheimer’s Disease patients provides insights into the molecular changes involved in the disease. Sci. Rep. 8(1), 4282. https://doi.org/10.1038/s41598-018-22701-2 (2018).Dalal, N. et al. Omics technologies for improved diagnosis and treatment of colorectal cancer: technical advancement and major perspectives. Biomed. Pharmacother. 131, 110648. https://doi.org/10.1016/j.biopha.2020.110648 (2020).Kukurba, K. R., Montgomery, S. B. & Analysis RNA Sequencing and Cold Spring Harb. Protoc., 11, pdb.top084970https://doi.org/10.1101/pdb.top084970 (2015).Rodriguez-Esteban, R. & Jiang, X. Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Med. Genomics. 10(1), 59. https://doi.org/10.1186/s12920-017-0293-y (2017).Jiang, H. et al. Nov., Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders, J. Exp. Med., 214(11), 3219–3238, https://doi.org/10.1084/jem.20171419 (2017).Ciryam, P., Tartaglia, G. G., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Widespread Aggregation and Neurodegenerative Diseases Are Associated with Supersaturated Proteins, Cell Rep., 5(3), 781–790 https://doi.org/10.1016/j.celrep.2013.09.043 (2013).Akila Parvathy Dharshini, S., Taguchi, Y. & Gromiha, M. M. Exploring the selective vulnerability in Alzheimer disease using tissue specific variant analysis. Genomics. 111(4), 936–949. https://doi.org/10.1016/j.ygeno.2018.05.024 (2019).Liang, W. S. et al. Apr., Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol. Genomics, 33(2), 240–256 https://doi.org/10.1152/physiolgenomics.00242.2007 (2008)Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 https://doi.org/10.1038/75556 (2000).Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG, Nucleic Acids Res. 47(D1), D590–D595 https://doi.org/10.1093/nar/gky962 (2019).Guo, J., Gao, J. & Liu, Z. HISAT2 parallelization method based on Spark Cluster. J. Phys. Conf. Ser. 2179(1), 012038. https://doi.org/10.1088/1742-6596/2179/1/012038 (2022).Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genomics Bioinforma 2(3), lqaa078 https://doi.org/10.1093/nargab/lqaa078 (2020).Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 https://doi.org/10.1186/s13059-014-0550-8 (2014).Szklarczyk, D. et al. Jan., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res. 47(D1), D607–D613 https://doi.org/10.1093/nar/gky1131 (2019).Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. 13(11), 2498–2504 https://doi.org/10.1101/gr.1239303 (2003).Huang, H. Y. et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 50, D222–D230 https://doi.org/10.1093/nar/gkab1079 (2022).Han, H. et al. TRRUST: a reference database of human transcriptional regulatory interactions. Sci. Rep. 5, 11432. https://doi.org/10.1038/srep11432 (2015).Tang, Y., Li, M., Wang, J., Pan, Y. & Wu, F. X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 127, 67–72. https://doi.org/10.1016/j.biosystems.2014.11.005 (2015).Freshour, S. L. et al. Integration of the Drug-Gene Interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151. https://doi.org/10.1093/nar/gkaa1084 (2021).Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082. https://doi.org/10.1093/nar/gkx1037 (2018).Van Der Spoel, D. et al. GROMACS: Fast, flexible, and free, J. Comput. Chem. 26(16), 1701–1718, https://doi.org/10.1002/jcc.20291 (2005).Casares, D., Escribá, P. V. & Rosselló, C. A. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20(9), 2167. https://doi.org/10.3390/ijms20092167 (2019).Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM, J. Comput. Chem. 29(11), 1859–1865 https://doi.org/10.1002/jcc.20945 (2008).Huang, J. et al. Jan., CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nat. Methods, 14(1), 71–73, https://doi.org/10.1038/nmeth.4067 (2017).An, H., Yu, H., Wei, Y., Liu, F. & Ye, J. Disrupted metabolic pathways and potential human diseases induced by bisphenol S. Environ. Toxicol. Pharmacol. 88, 103751. https://doi.org/10.1016/j.etap.2021.103751 (2021).Pouresmaeili, F., Kamali Dehghan, B., Kamarehei, M. & Yong Meng, G. A comprehensive overview on osteoporosis and its risk factors, Ther. Clin. Risk Manag., 14, 2029–2049 https://doi.org/10.2147/TCRM.S138000 (2018).Ansoleaga, B. et al. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol. Aging. 36(1), 68–80. https://doi.org/10.1016/j.neurobiolaging.2014.08.004 (2015).Calvo-Rodriguez, M., García-Rodríguez, C., Villalobos, C. & Núñez, L. Role of toll like receptor 4 in Alzheimer’s Disease. Front. Immunol. 11, 1588. https://doi.org/10.3389/fimmu.2020.01588 (2020).Chang, R., Yee, K. L. & Sumbria, R. K. Tumor necrosis factor α Inhibition for Alzheimer’s Disease, J. Cent. Nerv. Syst. Dis., 9, 117957351770927, https://doi.org/10.1177/1179573517709278 (2017).Misrani, A., Tabassum, S. & Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s Disease. Front. Aging Neurosci. 13, 617588. https://doi.org/10.3389/fnagi.2021.617588 (2021).Sun, Y. et al. Role of the Extracellular Matrix in Alzheimer’s Disease. Front. Aging Neurosci. 13, 707466. https://doi.org/10.3389/fnagi.2021.707466 (2021).Sanchez-Mico, M. V. et al. Apr., Amyloid‐β impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer’s disease, Glia, 69(4), 997–1011 https://doi.org/10.1002/glia.23943 (2021).Hook, G., Hook, V. & Kindy, M. The Cysteine Protease Inhibitor, E64d, Reduces Brain Amyloid-β and Improves Memory Deficits in Alzheimer’s Disease Animal Models by Inhibiting Cathepsin B, but not BACE1, β-Secretase Activity, J. Alzheimers Dis., 26(2), 387–408 https://doi.org/10.3233/JAD-2011-110101 (2011).Peng, Y., Chang, X. & Lang, M. Iron Homeostasis Disorder and Alzheimer’s Disease. Int. J. Mol. Sci.22(22), 12442. https://doi.org/10.3390/ijms222212442 (2021). Shenolikar, S. (Ed.) Protein phosphorylation in health and disease. In Progress in Molecular Biology and Translational Science, no. v. 106. Amsterdam: Elsevier/Academic (2012).
Google Scholar 
De Rivero Vaccari, J. P. et al. RIG–1 receptor expression in the pathology of Alzheimer’s disease, J. Neuroinflammation 11(1), 67 https://doi.org/10.1186/1742-2094-11-67 (2014).Kim, J. H. et al. The Association between thyroid diseases and Alzheimer’s Disease in a National Health Screening Cohort in Korea. Front. Endocrinol. 13, 815063 https://doi.org/10.3389/fendo.2022.815063 (2022).Nalivaeva, N. N. & Turner, A. J. Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy, Br. J. Pharmacol., 176(18), 3447–3463, (2019) https://doi.org/10.1111/bph.14593Shudo, K., Fukasawa, H., Nakagomi, M. & Yamagata, N. Towards Retinoid Therapy for Alzheimers Disease, Curr. Alzheimer Res., 6(3), 302–311, (2009) https://doi.org/10.2174/156720509788486581Koper, O., Kamińska, J., Sawicki, K. & Kemona, H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration, Adv. Clin. Exp. Med., 27(6), 849–856, (2018) https://doi.org/10.17219/acem/68846Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420 https://doi.org/10.1146/annurev.immunol.26.021607.090404 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Huberman, M. et al. Correlation of cytokine secretion by mononuclear cells of Alzheimer patients and their disease stage. J. Neuroimmunol. 52(2), 147–152 https://doi.org/10.1016/0165-5728(94)90108-2 (1994).Manivasagam, S. et al. Targeting IFN-λ Signaling Promotes Recovery from Central Nervous System Autoimmunity, J. Immunol. Baltim. Md, 208(6), 1341–1351 https://doi.org/10.4049/jimmunol.2101041 (1950).Jeon, Y. J., Yoo, H. M. & Chung, C. H. ISG15 and immune diseases. Biochim. Biophys. Acta. 1802(5), 485–496. https://doi.org/10.1016/j.bbadis.2010.02.006 (2010).Wang, Q. L., Fang, C. L., Huang, X. Y. & Xue, L. L. Research progress of the CXCR4 mechanism in Alzheimer’s disease. Ibrain. 8(1), 3–14. https://doi.org/10.1002/ibra.12026 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Peters, V. A., Joesting, J. J. & Freund, G. G. IL–1 receptor 2 (IL–1R2) and its role in immune regulation. Brain Behav. Immun. 32, 1–8. https://doi.org/10.1016/j.bbi.2012.11.006 (2013).Solleiro-Villavicencio, H. & Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4 + T cells in neurodegenerative diseases. Front. Cell. Neurosci. 12, 114. https://doi.org/10.3389/fncel.2018.00114 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, T. et al. Sep., Matrix Metalloproteinase–8 Inhibitor Ameliorates Inflammatory Responses and Behavioral Deficits in LRRK2 G2019S Parkinson’s Disease Model Mice, Biomol. Ther. 29(5), 483–491.https://doi.org/10.4062/biomolther.2020.181 (2021)Zaręba, N. & Kepinska, M. The function of Transthyretin Complexes with Metallothionein in Alzheimer’s Disease. Int. J. Mol. Sci. 21(23), 9003. https://doi.org/10.3390/ijms21239003 (2020).Smyth, L. C. D. et al. Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer’s disease. Acta Neuropathol. Commun. 10(1), 38. https://doi.org/10.1186/s40478-022-01347-2 (2022).Aries, M. L. & Hensley-McBain, T. Neutrophils as a potential therapeutic target in Alzheimer’s disease. Front. Immunol. 14, 1123149. https://doi.org/10.3389/fimmu.2023.1123149 (2023).Ghadami, S. A. et al. Mar., Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers, Biomacromolecules, 21(3), 1112–1125 https://doi.org/10.1021/acs.biomac.9b01475 (2020).Alemi, M. et al. Transthyretin participates in beta-amyloid transport from the brain to the liver- involvement of the low-density lipoprotein receptor-related protein 1? Sci. Rep. 6(1), 20164. https://doi.org/10.1038/srep20164 (2016).Cotrina, E. Y. et al. Targeting transthyretin in Alzheimer’s disease: drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 226, 113847. https://doi.org/10.1016/j.ejmech.2021.113847 (2021).

Hot Topics

Related Articles