DiffModeler: large macromolecular structure modeling for cryo-EM maps using a diffusion model

Bai, X.-C., McMullan, G. & Scheres, S. H. How cryo-EM is revolutionizing structural biology. J. Mol. Biol. 40, 49–57 (2015).CAS 

Google Scholar 
Wüthrich, K. The way to NMR structures of proteins. Nat. Struct. Biol. 8, 923–925 (2001).Article 
PubMed 

Google Scholar 
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002).Article 
PubMed 

Google Scholar 
Terashi, G. & Kihara, D. De novo main-chain modeling for EM maps using MAINMAST. Nat. Commun. 9, 1618 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021).Article 
CAS 
PubMed 

Google Scholar 
Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X., Zhang, B., Freddolino, P. L. & Zhang, Y. CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks. Nat. Methods 19, 195–204 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Terashi, G., Wang, X., Prasad, D., Nakamura, T. & Kihara, D. DeepMainMast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction. Nat. Methods 21, 122–131 (2024).Article 
CAS 
PubMed 

Google Scholar 
Wang, X., Terashi, G. & Kihara, D. CryoREAD: de novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023).Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).Article 
CAS 

Google Scholar 
Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rantos, V., Karius, K. & Kosinski, J. Integrative structural modeling of macromolecular complexes using Assembline. Nat. Protoc. 17, 152–176 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lasker, K., Topf, M., Sali, A. & Wolfson, H. J. Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. J. Mol. Biol. 388, 180–194 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article 
CAS 
PubMed 

Google Scholar 
Alnabati, E., Esquivel-Rodriguez, J., Terashi, G. & Kihara, D. MarkovFit: structure fitting for protein complexes in electron microscopy maps using Markov random field. Front. Mol. Biosci. 9, 935411 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, X., Terashi, G., Christoffer, C., Chen, S. & Kihara, D. VESPER: global and local cryo-EM map alignment using local density vectors. Nat. Commun. 12, 2090 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).Article 
CAS 
PubMed 

Google Scholar 
Maddhuri Venkata Subramaniya, S. R., Terashi, G. & Kihara, D. Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning. Nat. Methods 16, 911–917 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. et al. Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning. Nat. Commun. 12, 2302 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mostosi, P., Schindelin, H., Kollmannsberger, P. & Thorn, A. Haruspex: a neural network for the automatic identification of oligonucleotides and protein secondary structure in cryo-electron microscopy maps. Angew. Chem. Int. Ed. 59, 14788–14795 (2020).Article 
CAS 

Google Scholar 
Dhariwal, P. & Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021).
Google Scholar 
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).
Google Scholar 
Song, J., Meng, C. & Ermon, S. Denoising diffusion implicit models. In Proc. International Conference on Learning Representations (2021).Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. Preprint at arXiv (2022).Nichol, A. Q. et al. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. In Proc. 39th International Conference on Machine Learning 162, 16784–16804 (PMLR, 2023).Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P. & Cattin, P. C. Diffusion models for implicit image segmentation ensembles. In Proc. 5th International Conference on Medical Imaging with Deep Learning 172, 1336–1348 (PMLR, 2022).Chen, T., Li, L., Saxena, S., Hinton, G. & Fleet, D. J. A generalist framework for panoptic segmentation of images and videos. In Proc. IEEE/CVF International Conference on Computer Vision 909–919 (2023).Saharia, C. et al. Palette: image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings 15 (Association for Computing Machinery, 2022).Ruiz, N. et al. DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 22500–22510 (2023).Corso, G., Jing, B., Barzilay, R. & Jaakkola, T. International Conference on Learning Representations (ICLR, 2023).Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).Yim, J. et al. SE (3) diffusion model with application to protein backbone generation. In Proc. International Conference on Machine Learning 1632 (JMLR, 2023).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins57, 702–710 (2004).Article 
CAS 
PubMed 

Google Scholar 
Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Jorge Cardoso, M. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support 240–248 (Springer, 2017).Fontana, P. et al. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 376, eabm9326 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dutta, D., Nguyen, V., Campbell, K. S., Padrón, R. & Craig, R. Cryo-EM structure of the human cardiac myosin filament. Nature 623, 853–862 (2023).Cramer, P. AlphaFold2 and the future of structural biology. Nat. Struct. Mol. Biol. 28, 704–705 (2021).Article 
CAS 
PubMed 

Google Scholar 
Carreira-Perpinan, M. A. Acceleration strategies for Gaussian mean-shift image segmentation. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 1160–1167 (IEEE, 2006).Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv (2022).Mukherjee, S. & Zhang, Y. MM-align: a quick algorithm for aligning multiple-chain protein complex structures using iterative dynamic programming. Nucleic Acids Res. 37, e83 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
He, J., Lin, P., Chen, J., Cao, H. & Huang, S.-Y. Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nat. Commun. 13, 4066 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).Article 
CAS 

Google Scholar 
Zhang, S., Li, N., Zeng, W., Gao, N. & Yang, M. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell 8, 834–847 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).Article 
CAS 
PubMed 

Google Scholar 
Khan, A. K. et al. A steric ‘ball-and-chain’ mechanism for pH-mediated regulation of gap junction channels. Cell Rep. 31, 107482 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blees, A. et al. Structure of the human MHC-I peptide-loading complex. Nature 551, 525–528 (2017).Article 
CAS 
PubMed 

Google Scholar 
Majumder, P. et al. Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle. Proc. Natl Acad. Sci. USA 116, 534–539 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gutiérrez-Fernández, J. et al. Key role of quinone in the mechanism of respiratory complex I. Nat. Commun. 11, 4135 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ding, Z. et al. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res. 27, 373–385 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ranson, N. A. et al. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107, 869–879 (2001).Article 
CAS 
PubMed 

Google Scholar 
Sah-Teli, S. K. et al. Structural basis for different membrane-binding properties of E. coli anaerobic and human mitochondrial β-oxidation trifunctional enzymes. Structure 31, 812–825 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sah-Teli, S. K. et al. Complementary substrate specificity and distinct quaternary assembly of the Escherichia coli aerobic and anaerobic β-oxidation trifunctional enzyme complexes. Biochem. J. 476, 1975–1994 (2019).Article 
CAS 
PubMed 

Google Scholar 
Paul, D. M. et al. In situ cryo-electron tomography reveals filamentous actin within the microtubule lumen. J. Cell Biol. 219, e201911154 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016).Article 
PubMed 

Google Scholar 
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature https://doi.org/10.1038/s41586-024-07215-4 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
CAS 
PubMed 

Google Scholar 
Takada, H. et al. RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Nucleic Acids Res. 49, 8355–8369 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Turk, M. & Baumeister, W. The promise and the challenges of cryo‐electron tomography. FEBS Lett. 594, 3243–3261 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z. et al. De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking. Cell 186, 5041–5053.e5019 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Terashi, G., Wang, X., Prasad, D., Nakamura, T. & Kihara, D. DeepMainMast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction. Nat. Methods 21, 122–131 (2023).Wang, X., Terashi, G. & Kihara, D. De novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nat. Methods 20, 1739–1747 (2023).Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proc. 3rd International Conference on Learning Representations (eds Bengio, Y. & LeCun, Y.) (2015).Farabella, I. et al. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J. Appl. Crystallogr. 48, 1314–1323 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cretin, G. et al. SWORD2: hierarchical analysis of protein 3D structures. Nucleic Acids Res. 50, W732–W738 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X., Zhu, H., Terashi, G., Taluja, M. & Kihara, D. Data of ‘DiffModeler: large macromolecular structure modeling for cryo-EM maps using diffusion model’. Zenodo https://doi.org/10.5281/zenodo.12155184 (2024).Wang, X., Zhu, H., Terashi, G., Taluja, M. & Kihara, D. Code of ‘DiffModeler: large macromolecular structure modeling for cryo-EM maps using diffusion model’. Zenodo https://doi.org/10.5281/zenodo.13132116 (2024).

Hot Topics

Related Articles