A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013).Article 

Google Scholar 
Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Levine, M. E. Assessment of epigenetic clocks as biomarkers of aging in basic and population research. J. Gerontol. A Biol. Sci. Med. Sci. 75, 463–465 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Harris, N., Kunicka, J. & Kratz, A. The ADVIA 2120 hematology system: flow cytometry-based analysis of blood and body fluids in the routine hematology laboratory. Lab. Hematol. 11, 47–61 (2005).Article 
PubMed 

Google Scholar 
Coppola, L. et al. Blood viscosity and aging. Arch. Gerontol. Geriatr. 31, 35–42 (2000).Article 
CAS 
PubMed 

Google Scholar 
Simmonds, M. J., Meiselman, H. J. & Baskurt, O. K. Blood rheology and aging. J. Geriatr. Cardiol. 10, 291–301 (2013).PubMed 
PubMed Central 

Google Scholar 
Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016 (1996).Article 
CAS 
PubMed 

Google Scholar 
Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hager, K., Setzer, J., Vogl, T., Voit, J. & Platt, D. Blood coagulation factors in the elderly. Arch. Gerontol. Geriatr. 9, 277–282 (1989).Article 
CAS 
PubMed 

Google Scholar 
Chhetri, J. K., Zheng, Z., Xu, X., Ma, C. & Chan, P. The prevalence and incidence of frailty in pre-diabetic and diabetic community-dwelling older population: results from Beijing longitudinal study of aging II (BLSA-II). BMC Geriatrics 17, 47 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Sorkin, J. D., Muller, D. C., Fleg, J. L. & Andres, R. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care 28, 2626–2632 (2005).Article 
PubMed 

Google Scholar 
Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Avchaciov, K. et al. Unsupervised learning of aging principles from longitudinal data. Nat. Commun. 13, 6529 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oh, H. S. H. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, X. et al. Accelerated aging mediates the associations of unhealthy lifestyles with cardiovascular disease, cancer, and mortality. J. Am. Geriatr. Soc. 72, 181–193 (2024).Article 
PubMed 

Google Scholar 
Palliyaguru, D. L. et al. Fasting blood glucose as a predictor of mortality: lost in translation. Cell Metab. 33, 2189–2200 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Palliyaguru, D. L. et al. Study of Longitudinal Aging in Mice: presentation of experimental techniques. J. Gerontol. A Biol. Sci. Med. Sci. 76, 552–560 (2021).Article 
PubMed 

Google Scholar 
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32. https://papers.nips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf (NeurIPS, 2019).LeDell E. & Poirier S. H2O AutoML: scalable automatic machine learning. In Proc. of the 7th ICML Workshop on Automated Machine Learning. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf (2020).Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The diversity outbred mouse population. Mamm. Genome 23, 713–718 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative Cross and Diversity Outbred data resources in the Mouse Phenome Database. Mamm. Genome 26, 511–520 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Watanabe, S. & Yamana, H. Overfitting measurement of deep neural networks using no data. In Proc. of the 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA). https://doi.org/10.1109/DSAA53316.2021.9564119 (IEEE, 2021).Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gedeon, T. D. Data mining of inputs: analysing magnitude and functional measures. Int. J. Neural Syst. 8, 209–218 (1997).Article 
CAS 
PubMed 

Google Scholar 
Bellantuono, I. et al. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat. Protoc. 15, 540–574 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schroer, A. B. et al. Platelet factors attenuate inflammation and rescue cognition in ageing. Nature 620, 1071–1079 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Van Zant, G. & de Haan, G. Genetic control of lifespan: studies from animal models. Expert Rev. Mol. Med. 1, 1–12 (1999).Article 

Google Scholar 
Austad, S. N. & Fischer, K. E. Sex differences in lifespan. Cell Metab. 23, 1022–1033 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bou Sleiman, M. et al. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. Science 377, eabo3191 (2022).Article 
PubMed 

Google Scholar 
Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. Series B Methodol. 34, 187–202 (1972).Article 

Google Scholar 
Searle, S. D., Mitnitski, A., Gahbauer, E. A., Gill, T. M. & Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 8, 24 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Parks, R. J. et al. A procedure for creating a frailty index based on deficit accumulation in aging mice. J. Gerontol. A Biol. Sci. Med. Sci. 67, 217–227 (2012).Article 
PubMed 

Google Scholar 
Hession, L. E., Sabnis, G. S., Churchill, G. A. & Kumar, V. A machine-vision-based frailty index for mice. Nat. Aging 2, 756–766 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Whitehead, J. C. et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J. Gerontol. A Biol. Sci. Med. Sci. 69, 621–632 (2014).Article 
PubMed 

Google Scholar 
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

Google Scholar 
Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 1–27 (2005).Article 

Google Scholar 
Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2011).Article 
PubMed 

Google Scholar 
Hodson, T. O. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci. Model Dev. 15, 5481–5487 (2022).Article 

Google Scholar 
Wang, C., Li, Q., Redden, D. T., Weindruch, R. & Allison, D. B. Statistical methods for testing effects on ‘maximum lifespan’. Mech. Ageing Dev. 125, 629–632 (2004).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles