Application of physiological network mapping in the prediction of survival in critically ill patients with acute liver failure

Raith, E. P. et al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA 317, 290–300. https://doi.org/10.1001/jama.2016.20328 (2017).Article 
PubMed 

Google Scholar 
Maslove, D. M. et al. Redefining critical illness. Nat. Med. 28, 1141–1148. https://doi.org/10.1038/s41591-022-01843-x (2022).Article 
CAS 
PubMed 

Google Scholar 
Nielsen, A. B. et al. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. Lancet Dig. Health 1, e78–e89. https://doi.org/10.1016/s2589-7500(19)30024-x (2019).Article 

Google Scholar 
Asada, T. et al. Organ system network disruption in nonsurvivors of critically ill patients. Crit. Care Med. 44, 1 (2016).Article 

Google Scholar 
Shashikumar, S. P., Li, Q., Clifford, G. D. & Nemati, S. Multiscale network representation of physiological time series for early prediction of sepsis. Physiol. Meas. 38, 2235–2248. https://doi.org/10.1088/1361-6579/aa9772 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Asada, T. et al. Organ system network analysis and biological stability in critically ill patients. Crit. Care 23, 83. https://doi.org/10.1186/s13054-019-2376-y (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ivanov, P. C. The new field of network physiology: building the human physiolome. Front. Netw. Physiol. 1, 711778. https://doi.org/10.3389/fnetp.2021.711778 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Jiang, Y. et al. A network physiology approach to oxygen saturation variability during normobaric hypoxia. Exp. Physiol. 106, 151–159. https://doi.org/10.1113/EP088755 (2021).Article 
CAS 
PubMed 

Google Scholar 
Golding, P. L., Smith, M. & Williams, R. Multisystem involvement in chronic liver disease. Studies on the incidence and pathogenesis. Am. J. Med. 55, 772–782. https://doi.org/10.1016/0002-9343(73)90258-1 (1973).Article 
CAS 
PubMed 

Google Scholar 
Oyelade, T. et al. Heart rate variability in patients with cirrhosis: a systematic review and meta-analysis. Physiol. Meas. 42, 888. https://doi.org/10.1088/1361-6579/abf888 (2021).Article 

Google Scholar 
Mani, A. R. et al. Decreased heart rate variability in patients with cirrhosis relates to the presence and degree of hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G330–338. https://doi.org/10.1152/ajpgi.90488.2008 (2009).Article 
CAS 
PubMed 

Google Scholar 
Abid, N. U. H. & Mani, A. R. The mechanistic and prognostic implications of heart rate variability analysis in patients with cirrhosis. Physiol. Rep. 10, e15261. https://doi.org/10.14814/phy2.15261 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Mani, A. R., Mazloom, R., Haddadian, Z. & Montagnese, S. Body temperature fluctuation analysis in cirrhosis. Liver Int. 38, 378–379. https://doi.org/10.1111/liv.13539 (2018).Article 
PubMed 

Google Scholar 
Bottaro, M. et al. Skin temperature variability is an independent predictor of survival in patients with cirrhosis. Physiol. Rep. 8, e14452. https://doi.org/10.14814/phy2.14452 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Abid, N. U. H. et al. Application of short-term analysis of skin temperature variability in prediction of survival in patients with cirrhosis. Front. Netw. Physiol. 3, 1 (2024).Article 

Google Scholar 
Tan, Y. Y., Montagnese, S. & Mani, A. R. Organ system network disruption is associated with poor prognosis in patients with chronic liver failure. Front. Physiol. 11, 1 (2020).Article 

Google Scholar 
Zhang, H., Oyelade, T., Moore, K. P., Montagnese, S. & Mani, A. R. Prognosis and survival modelling in cirrhosis using parenclitic networks. Front. Netw. Physiol. 2, 833119 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Oyelade, T., Forrest, E., Moore, K. P., O’Brien, A. & Mani, A. R. Parenclitic network mapping identifies response to targeted albumin therapy in patients hospitalized with decompensated cirrhosis. Clin. Transl. Gastroenterol. 14, e00587. https://doi.org/10.14309/ctg.0000000000000587 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Williams, R., Schalm, S. W. & O’Grady, J. G. Acute liver failure: redefining the syndromes. Lancet 342, 273–275. https://doi.org/10.1016/0140-6736(93)91818-7 (1993).Article 
PubMed 

Google Scholar 
Bernal, W., Auzinger, G., Dhawan, A. & Wendon, J. Acute liver failure. Lancet 376, 190–201. https://doi.org/10.1016/S0140-6736(10)60274-7 (2010).Article 
PubMed 

Google Scholar 
Forns, J. et al. Validity of ICD-9 and ICD-10 codes used to identify acute liver injury: a study in three European data sources. Pharmacoepidemiol. Drug Saf. 28, 965–975. https://doi.org/10.1002/pds.4803 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Udo, R. et al. Validity of diagnostic codes and laboratory measurements to identify patients with idiopathic acute liver injury in a hospital database. Pharmacoepidemiol. Drug Saf. 25, 21–28. https://doi.org/10.1002/pds.3824 (2016).Article 
CAS 
PubMed 

Google Scholar 
Teasdale, G. & Jennett, B. Assessment of coma and impaired consciousness: a practical scale. Lancet 304, 81–84. https://doi.org/10.1016/S0140-6736(74)91639-0 (1974).Article 

Google Scholar 
O’Grady, J. G., Alexander, G. J. M., Hayllar, K. M. & Williams, R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology 97, 439–445 (1989).Article 
PubMed 

Google Scholar 
Jain, S. & Iverson, L. M. Glasgow Coma Scale (2018).Montagnese, S. et al. Hepatic encephalopathy 2018: a clinical practice guideline by the Italian Association for the study of the liver (AISF). Digest Liver Dis. 51, 190–205. https://doi.org/10.1016/j.dld.2018.11.035 (2019).Article 

Google Scholar 
Wendon, J. et al. Bernardi, M. EASL clinical practical guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 66, 1047–1081 (2017).Article 
PubMed 

Google Scholar 
Vincent, J. L. et al. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure: On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine (See Contributors to the Project in the Appendix) (1996).Shirazi, A. H. et al. Evolution of communities in the medical sciences: evidence from the medical words network. PLoS ONE 11, e0167546. https://doi.org/10.1371/journal.pone.0167546 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818. https://doi.org/10.1038/nature03607 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Barabási, A. L. Network science. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120375 (2013).ADS 

Google Scholar 
Nguyen, A. D. k-Clique Algorithm MATLAB Central File Exchange (MATLAB Central File Exchange, 2024).Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscipl. Rev. Comput. Stat. 2, 433–459 (2010).Article 

Google Scholar 
Kaiser, H. F. Computer program for varimax rotation in factor analysis. Educ. Psychol. Meas. 19, 413–420 (1959).Article 

Google Scholar 
Brier, G. W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950).Article 
ADS 

Google Scholar 
Pencina, M. J., D’Agostino Sr, R. B., D’Agostino, R. B. & Vasan, R. S. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat. Med. 27, 157–172 (2008).Article 
MathSciNet 
PubMed 

Google Scholar 
Derényi, I., Palla, G. & Vicsek, T. Clique percolation in random networks. Phys. Rev. Lett. 94, 160202. https://doi.org/10.1103/PhysRevLett.94.160202 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Porter, M. A., Onnela, J. P. & Mucha, P. J. Communities in networks. Not. Am. Math. Soc. 56, 1082–1097 (2009).MathSciNet 

Google Scholar 
Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174. https://doi.org/10.1016/j.physrep.2009.11.002 (2010).Article 
ADS 
MathSciNet 

Google Scholar 
Katopodis, P., Pappas, E. M. & Katopodis, K. P. Acid-base abnormalities and liver dysfunction. Ann. Hepatol. 27, 100675. https://doi.org/10.1016/j.aohep.2022.100675 (2022).Article 
CAS 
PubMed 

Google Scholar 
Walsh, T. S., Mc Lellan, S., Mackenzie, S. J. & Lee, A. Hyperlactatemia and pulmonary lactate production in patients with fulminant hepatic failure. Chest 116, 471–476. https://doi.org/10.1378/chest.116.2.471 (1999).Article 
CAS 
PubMed 

Google Scholar 
Yudkin, J. & Cohen, R. D. The contribution of the kidney to the removal of a lactic acid load under normal and acidotic conditions in the conscious rat. Clin. Sci. Mol. Med. 48, 121–131 (1975).CAS 
PubMed 

Google Scholar 
Bellomo, R. Bench-to-bedside review: lactate and the kidney. Crit. Care 6, 322–326. https://doi.org/10.1186/cc1518 (2002).Article 
PubMed 
PubMed Central 

Google Scholar 
Bihari, D., Gimson, A. E., Lindridge, J. & Williams, R. Lactic acidosis in fulminant hepatic failure. Some aspects of pathogenesis and prognosis. J. Hepatol. 1, 405–416. https://doi.org/10.1016/s0168-8278(85)80778-9 (1985).Article 
CAS 
PubMed 

Google Scholar 
Bernal, W., Donaldson, N., Wyncoll, D. & Wendon, J. Blood lactate as an early predictor of outcome in Paracetamol-induced acute liver failure: a cohort study. Lancet 359, 558–563. https://doi.org/10.1016/s0140-6736(02)07743-7 (2002).Article 
CAS 
PubMed 

Google Scholar 
Riordan, S. M. & Williams, R. Blood lactate and outcome of Paracetamol-induced acute liver failure. Lancet 360, 573. https://doi.org/10.1016/s0140-6736(02)09729-5 (2002).Article 
PubMed 

Google Scholar 
Bernal, W. Lactate is important in determining prognosis in acute liver failure. J. Hepatol. 53, 209–210. https://doi.org/10.1016/j.jhep.2010.02.017 (2010).Article 
CAS 
PubMed 

Google Scholar 
Schmidt, L. E. & Larsen, F. S. Blood lactate as a prognostic marker in acetaminophen-induced acute liver failure. Hepatology 37, 1199–1201. https://doi.org/10.1002/hep.510370530 (2003).Article 
PubMed 

Google Scholar 
Alcorn, J. Arterial blood lactate measurements quickly identified risk for death from Paracetamol-induced liver failure. ACP J. Club 137, 117 (2002).Article 
PubMed 

Google Scholar 
Scheiner, B. et al. Acid-base disorders in liver disease. J. Hepatol. 67, 1062–1073. https://doi.org/10.1016/j.jhep.2017.06.023 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bihari, D., Gimson, A. E. S., Lindridge, J. & Williams, R. Lactic acidosis in fulminant hepatic failure: some aspects of pathogenesis and prognosis. J. Hepatol. 1, 405–416. https://doi.org/10.1016/S0168-8278(85)80778-9 (1985).Article 
CAS 
PubMed 

Google Scholar 
Mikael, L. et al. Are there differences in the relationship between respiratory rate and oxygen saturation between patients with COVID-19 and those without COVID-19? Insights from a cohort-based correlational study. Emerg. Med. J. 40, 805. https://doi.org/10.1136/emermed-2022-212882 (2023).Article 

Google Scholar 
Mower, W. R., Sachs, C., Nicklin, E. L., Safa, P. & Baraff, L. J. A comparison of pulse oximetry and respiratory rate in patient screening. Respir. Med. 90, 593–599. https://doi.org/10.1016/S0954-6111(96)90017-7 (1996).Article 
CAS 
PubMed 

Google Scholar 
Oyelade, T. et al. Heart rate turbulence predicts survival independently from severity of liver dysfunction in patients with cirrhosis. Front. Physiol. 11, 602456 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Tan, Y. Y., Montagnese, S. & Mani, A. R. Organ system network disruption is associated with poor prognosis in patients with chronic liver failure. Front. Physiol. 11, 983 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
D’Amico, G., Garcia-Tsao, G. & Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J. Hepatol. 44, 217–231 (2006).Article 
PubMed 

Google Scholar 
Asrani, S. K. & Kamath, P. S. Natural history of cirrhosis. Curr. Gastroenterol. Rep. 15, 1–6 (2013).Article 

Google Scholar 
Geiger, B. C. & Kubin, G. Relative information loss in the PCA. In Proceedings of the IEEE Information Theory Workshop 562–566 (2012).National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (National Institute of Diabetes and Digestive and Kidney Diseases, 2012).Hinson, J. A., Roberts, D. W. & James, L. P. Mechanisms of acetaminophen-induced liver necrosis. Handb. Exp. Pharmacol. 1, 369–405. https://doi.org/10.1007/978-3-642-00663-0_12 (2010).Article 
CAS 

Google Scholar 
Yang, R. et al. Alanine aminotransferase and bilirubin dynamic evolution pattern as a novel model for the prediction of acute liver failure in drug-induced liver injury. Front. Pharmacol. 13, 1 (2022).CAS 

Google Scholar 
Larsen, F. S., Hansen, B. A. & Blei, A. T. Intensive care management of patients with acute liver failure with emphasis on systemic hemodynamic instability and cerebral edema: a critical appraisal of pathophysiology. Can. J. Gastroenterol. 14, 105–111. https://doi.org/10.1155/2000/493629 (2000).Article 

Google Scholar 
Oldenbeuving, G. et al. A patient with acute liver failure and extreme hypoglycaemia with lactic acidosis who was not in a coma: causes and consequences of lactate-protected hypoglycaemia. Anaesth. Intens. Care 42, 507–511. https://doi.org/10.1177/0310057×1404200413 (2014).Article 
CAS 

Google Scholar 
Record, C. O., Iles, R. A., Cohen, R. D. & Williams, R. Acid-base and metabolic disturbances in fulminant hepatic failure. Gut 16, 144–149. https://doi.org/10.1136/gut.16.2.144 (1975).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Talari, K. & Goyal, M. Retrospective studies–utility and caveats. J. R. Coll. Phys. Edinb. 50, 398–402 (2020).Article 

Google Scholar 
Moss, T. J. et al. Signatures of subacute potentially catastrophic illness in the ICU: model development and validation. Crit. Care Med. 44, 1639–1648. https://doi.org/10.1097/ccm.0000000000001738 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Gheorghita, M. et al. Reduced oxygen saturation entropy is associated with poor prognosis in critically ill patients with sepsis. Physiol. Rep. 10, e15546 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles