Estimation of causal effects of genes on complex traits using a Bayesian-network-based framework applied to GWAS data

Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).Article 

Google Scholar 
Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
Google Scholar 
Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).Article 

Google Scholar 
Zhu, X., Duren, Z. & Wong, W. H. Modeling regulatory network topology improves genome-wide analyses of complex human traits. Nat. Commun. 12, 2851 (2021).Article 

Google Scholar 
Burgess, S., Daniel, R. M., Butterworth, A. S., Thompson, S. G. & EPIC-InterAct Consortium Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 44, 484–495 (2015).Article 

Google Scholar 
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).Article 

Google Scholar 
Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J. & Visscher, P. M. Common disease is more complex than implied by the core gene omnigenic model. Cell 173, 1573–1580 (2018).Article 

Google Scholar 
Boyle, E. A., Li, Y. I. & Pritchard, J. K. The omnigenic model: response from the authors. J. Psychiatry Brain Sci. 2, S8 (2017).Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022–1034.e6 (2019).Article 

Google Scholar 
Liao, Z., Wang, Y., Qi, X. & Xiao, X. JAZF1, a relevant metabolic regulator in type 2 diabetes. Diabetes Metab. Res. Rev. 35, e3148 (2019).Article 

Google Scholar 
Zhang, H. Lysosomal acid lipase and lipid metabolism: new mechanisms, new questions, and new therapies. Curr. Opin. Lipidol. 29, 218–223 (2018).Article 

Google Scholar 
Evans, T. D. et al. Functional characterization of LIPA (lysosomal acid lipase) variants associated with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 39, 2480–2491 (2019).Article 

Google Scholar 
Yi, X., Ming, B., Wang, C., Chen, H. & Ma, C. Variants in COX-2, PTGIS, and TBXAS1 are associated with carotid artery or intracranial arterial stenosis and neurologic deterioration in ischemic stroke patients. J. Stroke Cerebrovasc. Dis. 26, 1128–1135 (2017).Article 

Google Scholar 
Davì, G. & Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357, 2482–2494 (2007).Article 

Google Scholar 
Zou, H., Chen, H., Zhou, Z., Wan, Y. & Liu, Z. ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett. 467, 19–28 (2019).Article 

Google Scholar 
Sattar, N., McInnes, I. B. & McMurray, J. J. Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation 142, 4–6 (2020).Article 

Google Scholar 
White, J. et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 1, 692–699 (2016).Article 

Google Scholar 
Riaz, H. et al. Association between obesity and cardiovascular outcomes: a systematic review and meta-analysis of Mendelian randomization studies. JAMA Netw. Open 1, e183788 (2018).Article 

Google Scholar 
Yeung, S. L. A., Luo, S. & Schooling, C. M. The impact of glycated hemoglobin (HbA1c) on cardiovascular disease risk: a Mendelian randomization study using UK Biobank. Diabetes Care 41, 1991–1997 (2018).Article 

Google Scholar 
Pai, J. K. et al. Hemoglobin A1c is associated with increased risk of incident coronary heart disease among apparently healthy, nondiabetic men and women. J. Am. Heart Assoc. 2, e000077 (2013).Article 

Google Scholar 
Weverling-Rijnsburger, A. W., Jonkers, I. J., Van Exel, E., Gussekloo, J. & Westendorp, R. G. High-density vs low-density lipoprotein cholesterol as the risk factor for coronary artery disease and stroke in old age. Arch. Intern. Med. 163, 1549–1554 (2003).Article 

Google Scholar 
Nikpay, M. & McPherson, R. Convergence of biomarkers and risk factor trait loci of coronary artery disease at 3p21.31 and HLA region. npj Genom. Med. 6, 12 (2021).Article 

Google Scholar 
Tontonoz, P. & Mangelsdorf, D. J. Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol. 17, 985–993 (2003).Article 

Google Scholar 
Lee, S. D. & Tontonoz, P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 242, 29–36 (2015).Article 

Google Scholar 
Calkin, A. C. & Tontonoz, P. Liver X receptor signaling pathways and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 1513–1518 (2010).Article 

Google Scholar 
Cannon, M. V., van Gilst, W. H. & de Boer, R. A. Emerging role of liver X receptors in cardiac pathophysiology and heart failure. Basic Res. Cardiol. 111, 3 (2016).Article 

Google Scholar 
Tian, J. et al. Dasatinib sensitises triple negative breast cancer cells to chemotherapy by targeting breast cancer stem cells. Br. J. Cancer 119, 1495–1507 (2018).Article 

Google Scholar 
Xu, J., Shi, P., Li, H. & Zhou, J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis. 6, 909–915 (2020).Article 

Google Scholar 
Braga, L. et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 594, 88–93 (2021).Article 

Google Scholar 
Kunzelmann, K. Getting hands on a drug for Covid-19: inhaled and intranasal niclosamide. Lancet Reg. Health Eur. 4, 100094 (2021).Article 

Google Scholar 
US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT04399356Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).Article 

Google Scholar 
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).Article 

Google Scholar 
Lin, Z., Xue, H. & Pan, W. Combining Mendelian randomization and network deconvolution for inference of causal networks with GWAS summary data. PLoS Genet. 19, e1010762 (2023).Article 

Google Scholar 
Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).Article 

Google Scholar 
Altay, G. & Emmert-Streib, F. Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 132 (2010).Article 

Google Scholar 
Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).Article 

Google Scholar 
Maathuis, M. H., Colombo, D., Kalisch, M. & Bühlmann, P. Predicting causal effects in large-scale systems from observational data. Nat. Methods 7, 247–248 (2010).Article 

Google Scholar 
Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at BioRxiv https://doi.org/10.1101/447367 (2018).Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091 (2015).Article 

Google Scholar 
Bühlmann, P., Kalisch, M. & Maathuis, M. H. Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm. Biometrika 97, 261–278 (2010).Article 
MathSciNet 

Google Scholar 
Spirtes, P. & Glymour, C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991).Article 

Google Scholar 
Kalisch, M. & Bühlmann, P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613–636 (2007).
Google Scholar 
Strobl, E. V. A constraint-based algorithm for causal discovery with cycles, latent variables and selection bias. Int. J. Data Sci. Anal. 8, 33–56 (2019).Article 

Google Scholar 
Park, K., Waldorp, L. J. & Ryan, O. Discovering cyclic causal models in psychological research. advances.in/psychology 2, e72425 (2024).Article 

Google Scholar 
Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008).Article 

Google Scholar 
Witten, D. M., Friedman, J. H. & Simon, N. New insights and faster computations for the graphical lasso. J. Comput. Graphical Stat. 20, 892–900 (2011).Article 
MathSciNet 

Google Scholar 
Meinshausen, N. & Bühlmann, P. High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34, 1436–1462 (2006).Article 
MathSciNet 

Google Scholar 
Pearl, J. Causality (Cambridge Univ. Press, 2009).Meek, C. Causal inference and causal explanation with background knowledge. In Proc. Eleventh Conference on Uncertainty in Artificial Intelligence 403–410 (AUAI Press, 1995).Peters, J., Mooij, J. M., Janzing, D. & Schölkopf, B. Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 15, 2009–2053 (2014).MathSciNet 

Google Scholar 
Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H. & Bühlmann, P. Causal inference using graphical models with the R package pcalg. J. Stat. Softw. 47, 1–26 (2012).Article 

Google Scholar 
Maathuis, M. H., Kalisch, M. & Bühlmann, P. Estimating high-dimensional intervention effects from observational data. Ann. Stat. 37, 3133–3164 (2009).Article 
MathSciNet 

Google Scholar 
Perković, E., Kalisch, M. & Maathuis, M. H. Interpreting and using CPDAGs with background knowledge. In Proc. 2017 Conference on Uncertainty in Artificial Intelligence 120 (AUAI Press, 2017).Nandy, P., Maathuis, M. H. & Richardson, T. S. Estimating the effect of joint interventions from observational data in sparse high-dimensional settings. Ann. Stat. 45, 647–674 (2017).Article 
MathSciNet 

Google Scholar 
Lu, J. et al. Causal network inference from gene transcriptional time-series response to glucocorticoids. PLoS Comput. Biol. 17, e1008223 (2021).Article 

Google Scholar 
Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I. M., Carrion, M. C. & Huang, Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34, 964–970 (2018).Article 

Google Scholar 
Hastie, T. & Qian, J. Glmnet vignette. Retrieved June 9, 1–30 (2014).
Google Scholar 
Meinshausen, N. & Bühlmann, P. Stability selection. J. R. Stat. Soc. B 72, 417–473 (2010).Article 
MathSciNet 

Google Scholar 
Carvalho-Silva, D. et al. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res. 47, D1056–D1065 (2019).Article 

Google Scholar 
Koscielny, G. et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 45, D985–D994 (2017).Article 

Google Scholar 
Wang, T. et al. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers. Nucleic Acids Res. 49, D1289–D1301 (2021).Article 

Google Scholar 
Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).Article 

Google Scholar 
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 14, 128 (2013).Article 

Google Scholar 
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).Article 

Google Scholar 
Licata, L. et al. SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Res. 48, D504–D510 (2020).
Google Scholar 
Yin, L. et al. Estimation of causal effects of genes on complex traits using a Bayesian network-based framework based on GWAS data. Zenodo https://doi.org/10.5281/zenodo.10065706 (2023).Yin, L. LiangyingYin/BN-GWAS-Simulation: v1.0.0 (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.10068075 (2023).

Hot Topics

Related Articles