Mechanisms of Berberine in anti-pancreatic ductal adenocarcinoma revealed by integrated multi-omics profiling

Sung, H. et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71 (3), 209–249 (2021).Article 
PubMed 

Google Scholar 
Mizrahi, J. D., Surana, R., Valle, J. W. & Shroff, R. T. Pancreatic cancer. Lancet. 395 (10242), 2008–2020 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liang, H. Y., Chen, T., Yan, H. T., Huang, Z. & Tang, L. J. Berberine ameliorates severe acute pancreatitis–induced intestinal barrier dysfunction via a myosin light chain phosphorylation–dependent pathway. Mol. Med. Rep.9 (5), 1827–1833 (2014).Article 
CAS 
PubMed 

Google Scholar 
Bansod, S., Doijad, N. & Godugu, C. Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization. Toxicol. Appl. Pharmacol.403, 115162 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yin, J., Xing, H. & Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 57 (5), 712–717 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yerra, V. G., Kalvala, A. K., Sherkhane, B., Areti, A. & Kumar, A. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology. 131, 256–270 (2018).Article 
CAS 
PubMed 

Google Scholar 
Goel, A. Current understanding and future prospects on Berberine for anticancer therapy. Chem. Biol. Drug Des.102 (1), 177–200 (2023).Article 
CAS 
PubMed 

Google Scholar 
Abrams, S. L. et al. Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv. Biol. Regul.71, 172–182 (2019).Article 
CAS 
PubMed 

Google Scholar 
Liu, J., Luo, X., Guo, R., Jing, W. & Lu, H. Cell Metabolomics reveals Berberine-inhibited pancreatic Cancer cell viability and metastasis by regulating citrate metabolism. J. Proteome Res.19 (9), 3825–3836 (2020).Article 
CAS 
PubMed 

Google Scholar 
Pinto-Garcia, L., Efferth, T., Torres, A., Hoheisel, J. D. & Youns, M. Berberine inhibits cell growth and mediates caspase-independent cell death in human pancreatic cancer cells. Planta Med.76 (11), 1155–1161 (2010).Article 
CAS 
PubMed 

Google Scholar 
Gu, S. et al. Berberine inhibits cancer cells growth by suppressing fatty acid synthesis and biogenesis of extracellular vesicles. Life Sci.257, 118122 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yu, G., Wang, L. G., Yan, G. R. & He, Q. Y. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 31 (4), 608–609 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28 (1), 27–30 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res.51 (D1), D587–D592 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci.28 (11), 1947–1951 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc.1 (3), e90 (2021).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43 (7), e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Gustavsson, E. K., Zhang, D., Reynolds, R. H., Garcia-Ruiz, S. & Ryten, M. Ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics. 38 (15), 3844–3846 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U S A. 102 (43), 15545–15550 (2005).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform.9, 559 (2008).Article 

Google Scholar 
Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res.51 (D1), D638–D646 (2023).Article 
CAS 
PubMed 

Google Scholar 
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex. Syst.1695, 1–9 (2005).
Google Scholar 
Robin, X. et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform.12, 77 (2011).Article 

Google Scholar 
Alba, A. C. et al. Discrimination and calibration of clinical prediction models: users’ guides to the Medical Literature. JAMA. 318 (14), 1377 (2017).Article 
PubMed 

Google Scholar 
Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling Tumor infiltrating Immune cells with CIBERSORT. Methods Mol. Biol.1711, 243–259 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell. 184 (13), 3573–3587e29 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods. 16 (12), 1289–1296 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol.20 (2), 163–172 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Y. et al. Tissue-Resident macrophages in Pancreatic Ductal Adenocarcinoma Originate from embryonic hematopoiesis and promote Tumor Progression. Immunity. 47 (2), 323–338e6 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Helm, O. et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis: role of macrophages in pancreatic cancer. Int. J. Cancer. 135 (4), 843–861 (2014).Article 
CAS 
PubMed 

Google Scholar 
Christenson, E. S., Jaffee, E. & Azad, N. S. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol.21 (3), e135–e145 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, A., Miao, K., Sun, H. & Deng, C. X. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int. J. Biol. Sci.18 (7), 3019–3033 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Suvà, M. L., Tirosh, I. & Single-Cell, R. N. A. Sequencing in Cancer: lessons learned and Emerging challenges. Mol. Cell.75 (1), 7–12 (2019).Article 
PubMed 

Google Scholar 
Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet.24 (1), 21–43 (2023).Article 
CAS 
PubMed 

Google Scholar 
Labori, K. J. et al. Impact of early disease progression and surgical complications on adjuvant chemotherapy completion rates and survival in patients undergoing the surgery first approach for resectable pancreatic ductal adenocarcinoma – a population-based cohort study. Acta Oncol.55 (3), 265–277 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ansari, D., Gustafsson, A. & Andersson, R. Update on the management of pancreatic cancer: surgery is not enough. World J. Gastroenterol.21 (11), 3157–3165 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Daamen, L. A. et al. Postoperative surveillance of pancreatic cancer patients. Eur. J. Surg. Oncol.45 (10), 1770–1777 (2019).Article 
CAS 
PubMed 

Google Scholar 
Andersson, R. et al. Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand. J. Gastroenterol.44 (7), 782–786 (2009).Article 
CAS 
PubMed 

Google Scholar 
Samadi, P. et al. Berberine: a novel therapeutic strategy for cancer. IUBMB Life. 72 (10), 2065–2079 (2020).Article 
CAS 
PubMed 

Google Scholar 
Devarajan, N. et al. Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother. Res.35 (6), 3059–3077 (2021).Article 
CAS 
PubMed 

Google Scholar 
Park, S. H., Sung, J. H. & Chung, N. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2. Mol. Cell. Biochem.394 (1–2), 209–215 (2014).Article 
CAS 
PubMed 

Google Scholar 
Park, S. H., Sung, J. H., Kim, E. J. & Chung, N. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz J. Med. Biol. Res.48 (2), 111–119 (2015).Article 
CAS 
PubMed 

Google Scholar 
Cheng, C. S. et al. Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression. Clin. Transl Med.11 (6), e467 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Okuno, K. et al. Berberine overcomes Gemcitabine-Associated Chemoresistance through Regulation of Rap1/PI3K-Akt signaling in pancreatic ductal adenocarcinoma. Pharmaceuticals. 15 (10), 1199 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abrams, S. L. et al. Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of WT-TP53. Adv. Biol. Regul.83, 100840 (2022).Article 
CAS 
PubMed 

Google Scholar 
Spreafico, R., Soriaga, L. B., Grosse, J., Virgin, H. W. & Telenti, A. Advances in Genomics for Drug Development. Genes (Basel). 11 (8), 942 (2020).Article 
CAS 
PubMed 

Google Scholar 
Heath, J. R., Ribas, A. & Mischel, P. S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15 (3), 204–216 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kazi, A. et al. Global Phosphoproteomics Reveal CDK suppression as a vulnerability to KRas Addiction in Pancreatic Cancer. Clin. Cancer Res.27 (14), 4012–4024 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, J. et al. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut. 70 (5), 890–899 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wijnen, R. et al. Cyclin dependent Kinase-1 (CDK-1) inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel). 13 (17), 4389 (2021).Article 
CAS 
PubMed 

Google Scholar 
Piao, J. et al. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma. Gene. 701, 15–22 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dong, S., Huang, F., Zhang, H. & Chen, Q. Overexpression of BUB1B, CCNA2, CDC20, and CDK1 in tumor tissues predicts poor survival in pancreatic ductal adenocarcinoma. Biosci. Rep.39 (2), BSR20182306 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fang, L., Du, W. W., Awan, F. M., Dong, J. & Yang, B. B. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett.459, 216–226 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sano, M. et al. Induction of cell death in pancreatic ductal adenocarcinoma by indirubin 3’-oxime and 5-methoxyindirubin 3’-oxime in vitro and in vivo. Cancer Lett.397, 72–82 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J. Cell. Physiol.234 (1), 619–631 (2018).Article 
ADS 
PubMed 

Google Scholar 
Zhu, L. et al. Characterization of stem-like circulating tumor cells in pancreatic Cancer. Diagnostics (Basel). 10 (5), 305 (2020).Article 
CAS 
PubMed 

Google Scholar 
Pei, Y. F., Yin, X. M. & Liu, X. Q. TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis.1864 (1), 197–207 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tanaka, T. et al. Molecular pathogenesis of pancreatic ductal adenocarcinoma: impact of miR-30c-5p and miR-30c-2-3p regulation on oncogenic genes. Cancers (Basel). 12 (10), 2731 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bryant, V. L., Elias, R. M., McCarthy, S. M., Yeatman, T. J. & Alexandrow, M. G. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil. Mol. Cancer Res.13 (9), 1296–1305 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kayed, H. et al. Regulation and functional role of the runt-related transcription factor-2 in pancreatic cancer. Br. J. Cancer. 97 (8), 1106–1115 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. et al. NUSAP1-LDHA-Glycolysis-lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma. Cancer Lett.567, 216285 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. & Zhang, H. J. Glycometabolic rearrangements-aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): roles, regulatory networks, and therapeutic potential. Expert Opin. Ther. Targets. 25 (12), 1077–1093 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. et al. Targeting Plk1 sensitizes pancreatic Cancer to Immune Checkpoint Therapy. Cancer Res.82 (19), 3532–3548 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mahajan, U. M. et al. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut. 65 (11), 1838–1849 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gustin, P., Lekeux, P., Lomba, F. & Clercx, C. Mechanical properties of excised calf lungs. Res. Vet. Sci.42 (3), 272–276 (1987).Article 
CAS 
PubMed 

Google Scholar 
Yang, J., Li, Y., Sun, Z. & Zhan, H. Macrophages in pancreatic cancer: an immunometabolic perspective. Cancer Lett.498, 188–200 (2021).Article 
CAS 
PubMed 

Google Scholar 
Spek, C. A., Aberson, H. L. & Duitman, J. Macrophage C/EBPδ drives Gemcitabine, but not 5-FU or Paclitaxel, Resistance of Pancreatic Cancer cells in a deoxycytidine-dependent manner. Biomedicines. 10 (2), 219 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, R. et al. Pancreatic cancer-educated macrophages protect cancer cells from complement-dependent cytotoxicity by up-regulation of CD59. Cell. Death Dis.10 (11), 836 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kaneda, M. M. et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6 (8), 870–885 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tekin, C., Aberson, H. L., Bijlsma, M. F. & Spek, C. A. Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-α secretion. BMC Cancer. 20 (1), 1183 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles