Exploration of the shared gene signatures and molecular mechanisms between Alzheimer’s disease and intracranial aneurysm

Gaugler, J. et al. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement 18, 700–789. https://doi.org/10.1002/alz.12638 (2022).Article 

Google Scholar 
Zhang, T., Chen, D. M. & Lee, T. H. Phosphorylation signaling in APP processing in Alzheimer’s disease. Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21010209 (2020).Jia, J. P. et al. Diagnosis and treatment of dementia in neurology outpatient departments of general hospitals in China. Alzheimers Dement 12, 446–453. https://doi.org/10.1016/j.jalz.2015.06.1892 (2016).Article 
PubMed 

Google Scholar 
Macdonald, R. L. & Schweizer, T. A. Spontaneous subarachnoid haemorrhage. Lancet 389, 655–666. https://doi.org/10.1016/S0140-6736(16)30668-7 (2017).Article 
PubMed 

Google Scholar 
Zhao, B. et al. Aneurysm rebleeding after poor-grade aneurysmal subarachnoid hemorrhage: Predictors and impact on clinical outcomes. J. Neurol. Sci. 371, 62–66. https://doi.org/10.1016/j.jns.2016.10.020 (2016).Article 
ADS 
PubMed 

Google Scholar 
Tanno, Y., Homma, M., Oinuma, M., Kodama, N. & Ymamoto, T. Rebleeding from ruptured intracranial aneurysms in North Eastern Province of Japan. A cooperative study. J. Neurol. Sci. 258, 11–16. https://doi.org/10.1016/j.jns.2007.01.074 (2007).Article 
PubMed 

Google Scholar 
Vlak, M. H. M., Algra, A., Brandenburg, R. & Rinkel, G. J. E. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol. 10, 626–636. https://doi.org/10.1016/S1474-4422(11)70109-0 (2011).Article 
PubMed 

Google Scholar 
Morris, Z. et al. Incidental findings on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ-Brit. Med. J. 339. https://doi.org/10.1136/bmj.b3016 (2009).Müller, T. B., Vik, A., Romundstad, P. R. & Sandvei, M. S. Risk factors for unruptured intracranial aneurysms and subarachnoid hemorrhage in a prospective population-based study. Stroke 50, 2952–2955. https://doi.org/10.1161/Strokeaha.119.025951 (2019).Article 
PubMed 

Google Scholar 
Wang, J. et al. Atorvastatin and growth, rupture of small unruptured intracranial aneurysm: Results of a prospective cohort study. Ther. Adv. Neurol. Diso. 14. https://doi.org/10.1177/1756286420987939 (2021).Nussbaum, E. S., Mikoff, N. & Paranjape, G. S. Cognitive deficits among patients surviving aneurysmal subarachnoid hemorrhage. A contemporary systematic review. Brit. J. Neurosurg. 35, 384–401. https://doi.org/10.1080/02688697.2020.1859462 (2021)Zhao, Q. et al. Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. J. Neuroinflamm. 14. https://doi.org/10.1186/s12974-017-0878-6 (2017)Chrudinová, M. et al. A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression. Mol. Metab. 80. https://doi.org/10.1016/j.molmet.2023.101863 (2024)Sonntag, W. E. et al. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front. Aging Neurosci. 5. https://doi.org/10.3389/fnagi.2013.00027 (2013)Miller, L. R. et al. IGF1R deficiency in vascular smooth muscle cells impairs myogenic autoregulation and cognition in mice. Front. Aging Neurosci. 16. https://doi.org/10.3389/fnagi.2024.1320808 (2024).Siddals, K. W. et al. Apposite Insulin-like growth factor (IGF) receptor glycosylation is critical to the maintenance of vascular smooth muscle phenotype in the presence of factors promoting osteogenic differentiation and mineralization. J. Biol. Chem. 286, 16623–16630. https://doi.org/10.1074/jbc.M110.202929 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gorelick, P. B., Counts, S. E. & Nyenhuis, D. Vascular cognitive impairment and dementia. Bba-Mol Basis Dis. 1862, 860–868. https://doi.org/10.1016/j.bbadis.2015.12.015 (2016).Article 
CAS 

Google Scholar 
Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713. https://doi.org/10.1161/STR.0b013e3182299496 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Iadecola, C. et al. Vascular cognitive impairment and dementia. J. Am. Coll. Cardiol. 73, 3326–3344. https://doi.org/10.1016/j.jacc.2019.04.034 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Stokes, A. C. et al. Estimates of the Association of Dementia With US mortality levels using linked survey and mortality records. JAMA Neurol. 77, 1543–1550. https://doi.org/10.1001/jamaneurol.2020.2831 (2020).Article 
PubMed 

Google Scholar 
Poels, M. M. F. et al. Incidence of cerebral microbleeds in the general population the Rotterdam Scan Study. Stroke 42, 656–661. https://doi.org/10.1161/Strokeaha.110.607184 (2011).Article 
PubMed 

Google Scholar 
Chai, C. et al. Increased number and distribution of cerebral microbleeds is a risk factor for cognitive dysfunction in hemodialysis patients. Medicine 95. https://doi.org/10.1097/MD.0000000000002974 (2016).Gabbouj, S. et al. Altered insulin signaling in Alzheimer’s disease brain—Special emphasis on PI3K-Akt pathway. Front. Neurosci.-Switz. 13. https://doi.org/10.3389/fnins.2019.00629 (2019).Logan, S. et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol. Metab. 9, 141–155. https://doi.org/10.1016/j.molmet.2018.01.013 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Razani, E. et al. The PI3K/Akt signaling axis in Alzheimer’s disease: A valuable target to stimulate or suppress?. Cell Stress Chaperon 26, 871–887. https://doi.org/10.1007/s12192-021-01231-3 (2021).Article 
CAS 

Google Scholar 
Bianchi, V. E., Locatelli, V. & Rizzi, L. Neurotrophic and neuroregenerative effects of GH/IGF1. Int. J. Mol. Sci. 18. https://doi.org/10.3390/ijms18112441 (2017).Mangiola, A. et al. Role and importance of IGF-1 in traumatic brain injuries. Biomed. Res. Int. 2015. https://doi.org/10.1155/2015/736104 (2015).Gronwald, R. G. K. et al. Cloning and expression of a Cdna coding for the human platelet-derived growth-factor receptor—Evidence for more than one receptor class. Proc. Natl. Acad. Sci. USA85, 3435–3439. https://doi.org/10.1073/pnas.85.10.3435 (1988).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wardega, P., Heldin, C. H. & Lennartsson, J. Mutation of tyrosine residue 857 in the PDGF β-receptor affects cell proliferation but not migration. Cell Signal 22, 1363–1368. https://doi.org/10.1016/j.cellsig.2010.05.004 (2010).Article 
CAS 
PubMed 

Google Scholar 
Luo, D. et al. Long RNA profiles of human brain extracellular vesicles provide new insights into the pathogenesis of Alzheimer’s disease. Aging Dis. 14, 229–244. https://doi.org/10.14336/Ad.2022.0607 (2023).Sugimoto, Y. et al. A novel FOXP1-PDGFRA fusion gene in myeloproliferative neoplasm with eosinophilia. Cancer Genet. 208, 508–512. https://doi.org/10.1016/j.cancergen.2015.07.001 (2015).Article 
CAS 
PubMed 

Google Scholar 
Joensuu, H. et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J. Clin. Oncol. 33, 634–642. https://doi.org/10.1200/jco.2014.57.4970 (2015).Article 
CAS 
PubMed 

Google Scholar 
Smyth, L. C. D. et al. Markers for human brain pericytes and smooth muscle cells. J. Chem. Neuroanat. 92, 48–60. https://doi.org/10.1016/j.jchemneu.2018.06.001 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Hellström, M., Kalén, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).Article 
PubMed 

Google Scholar 
Nikolakopoulou, A. M., Zhao, Z., Montagne, A. & Zlokovic, B. V. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0176225 (2017).Parada, C. A. et al. Somatic mosaicism of a PDGFRB activating variant in aneurysms of the intracranial, coronary, aortic, and radial artery vascular beds. J. Am. Heart Assoc. 11, e024289. https://doi.org/10.1161/jaha.121.024289 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chenbhanich, J. et al. Segmental overgrowth and aneurysms due to mosaic PDGFRB p.(Tyr562Cys). Am J Med Genet A 185, 1430–1436. https://doi.org/10.1002/ajmg.a.62126 (2021).Karasozen, Y. et al. Somatic PDGFRB activating variants in fusiform cerebral aneurysms. Am. J. Hum. Genet. 104, 968–976. https://doi.org/10.1016/j.ajhg.2019.03.014 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shima, Y. et al. Increased PDGFRB and NF-κB signaling caused by highly prevalent somatic mutations in intracranial aneurysms. Sci Transl Med 15, eabq7721. https://doi.org/10.1126/scitranslmed.abq7721(2023).Davis, S. et al. Growth hormone deficiency in megalencephaly-capillary malformation syndrome: An association with activating mutations in PIK3CA. Am. J. Med. Genet. A 182, 162–168. https://doi.org/10.1002/ajmg.a.61403 (2020).Article 
CAS 
PubMed 

Google Scholar 
McDermott, J. H., Byers, H. & Clayton-Smith, J. Detection of a mosaic PIK3CA mutation in dental DNA from a child with megalencephaly capillary malformation syndrome. Clin. Dysmorphol. 25, 16–18. https://doi.org/10.1097/mcd.0000000000000099 (2016).Article 
PubMed 

Google Scholar 
Schreiber, A., Grenier, P. O. & Auger, I. A case of congenital lipomatous overgrowth, vascular malformations, epidermal nevi, spinal/skeletal anomalies and/or scoliosis syndrome with lipoatrophy as an important clinical manifestation. Pediatr. Dermatol. 34, 735–736. https://doi.org/10.1111/pde.13256 (2017).Article 
PubMed 

Google Scholar 
Martinez-Lopez, A. et al. CLOVES syndrome: Review of a PIK3CA-related overgrowth spectrum (PROS). Clin. Genet. 91, 14–21. https://doi.org/10.1111/cge.12832 (2017).Article 
CAS 
PubMed 

Google Scholar 
Rosenthal, J., Sibbald, C., Jen, M., Deardorff, M. A. & Treat, J. A PIK3CA mutation in an acquired capillary malformation. Pediatr. Dermatol. 37, 246–247. https://doi.org/10.1111/pde.14068 (2020).Article 
PubMed 

Google Scholar 
Castillo, S. D., Baselga, E. & Graupera, M. PIK3CA mutations in vascular malformations. Curr. Opin. Hematol. 26, 170–178. https://doi.org/10.1097/moh.0000000000000496 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, D. et al. Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflamm 8. https://doi.org/10.1186/1742-2094-8-3 (2011).Xu, H. & Jia, J. P. Immune-related hub genes and the competitive endogenous RNA network in Alzheimer’s disease. J. Alzheimers Dis. 77, 1255–1265. https://doi.org/10.3233/Jad-200081 (2020).Article 
CAS 
PubMed 

Google Scholar 
Takahashi-Tezuka, M. et al. Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol. Cell Biol. 18, 4109–4117. https://doi.org/10.1128/mcb.18.7.4109 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S. H. & Schlessinger, J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol. Cell Biol. 20, 1448–1459. https://doi.org/10.1128/mcb.20.4.1448-1459.2000 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu, N. N. et al. Cholinergic Grb2-associated-binding protein 1 regulates cognitive function. Cereb. Cortex 28, 2391–2404. https://doi.org/10.1093/cercor/bhx141 (2018).Article 
PubMed 

Google Scholar 
Gaikwad, S., Senapati, S., Haque, M. A. & Kayed, R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer’s disease: Evidence from clinical and preclinical studies. Alzheimers Dement 20, 709–727. https://doi.org/10.1002/alz.13490 (2024).Article 
CAS 
PubMed 

Google Scholar 
Reiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M. & Kasselman, L. J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 29, 613–627. https://doi.org/10.1515/revneuro-2017-0063 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ajoolabady, A., Lindholm, D., Ren, J. & Pratico, D. ER stress and UPR in Alzheimer’s disease: Mechanisms, pathogenesis, treatments. Cell Death Dis. 13. https://doi.org/10.1038/s41419-022-05153-5 (2022).Uddin, M. S., Yu, W. S. & Lim, L. W. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer’s disease. Ageing Res. Rev. 70. https://doi.org/10.1016/j.arr.2021.101417 (2021).Abramov, A. Y., Canevari, L. & Duchen, M. R. β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24, 565–575. https://doi.org/10.1523/Jneurosci.4042-03.2004 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, L. L., Tang, Y. P. & Law, B. Y. K. Targeting calcium signaling in Alzheimer’s disease: Challenges and promising therapeutic avenues. Neural Regen. Res. 19, 501–502. https://doi.org/10.4103/1673-5374.380898 (2024).Article 
CAS 
PubMed 

Google Scholar 
Chami, M. Calcium signalling in Alzheimer’s disease: From pathophysiological regulation to therapeutic approaches. Cells-Basel 10. https://doi.org/10.3390/cells10010140 (2021).Wang, X. L. et al. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Bba-Mol. Basis Dis. 1842, 1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015 (2014).Article 
CAS 

Google Scholar 
Garland-Kuntz, E. E. et al. Direct observation of conformational dynamics of the PH domain in phospholipases C\(\epsilon\) and β may contribute to subfamily-specific roles in regulation. J. Biol. Chem. 293, 17477–17490. https://doi.org/10.1074/jbc.RA118.003656 (2018).Li, X., Li, X., Jiang, M., Tian, W. & Zhou, B. Single nucleotide polymorphisms in PLCE1 for cancer risk of different types: A meta-analysis. Front. Oncol. 8, 613. https://doi.org/10.3389/fonc.2018.00613 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Popugaeva, E., Pchitskaya, E. & Bezprozvanny, I. Dysregulation of intracellular calcium signaling in Alzheimer’s disease. Antioxid Redox Signal 29, 1176–1188. https://doi.org/10.1089/ars.2018.7506 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, D. et al. Novel diagnostic biomarkers of oxidative stress, immunological characterization and experimental validation in Alzheimer’s disease. Aging (Albany NY) 15, 10389–10406. https://doi.org/10.18632/aging.205084 (2023).Myers, K. A. PLCB1 biallelic point mutations cause west syndrome. Pediatr. Neurol. 91, 62–64. https://doi.org/10.1016/j.pediatrneurol.2018.11.007 (2019).Article 
PubMed 

Google Scholar 
Kim, D. et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290–293. https://doi.org/10.1038/38508 (1997).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kim, S. W., Cho, T. & Lee, S. Phospholipase C-β1 Hypofunction in the Pathogenesis of Schizophrenia. Front. Psychiatry 6, 159. https://doi.org/10.3389/fpsyt.2015.00159 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Park, J. et al. Elevation of phospholipase C-β1 expression by amyloid-β facilitates calcium overload in neuronal cells. Brain Res. 1788, 147924. https://doi.org/10.1016/j.brainres.2022.147924 (2022).Article 
CAS 
PubMed 

Google Scholar 
You, W. C. et al. Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS ONE 8, e60290. https://doi.org/10.1371/journal.pone.0060290 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cavadas, M. A. et al. REST is a hypoxia-responsive transcriptional repressor. Sci. Rep. 6, 31355. https://doi.org/10.1038/srep31355 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vanhauwaert, R. et al. The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. Embo j 36, 1392–1411 (2017). https://doi.org/10.15252/embj.201695773McIntire, L. B. et al. Reduction of synaptojanin 1 ameliorates synaptic and behavioral impairments in a mouse model of Alzheimer’s disease. J. Neurosci. 32, 15271–15276. https://doi.org/10.1523/jneurosci.2034-12.2012 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, L. et al. Reduction of synaptojanin 1 accelerates Aβ clearance and attenuates cognitive deterioration in an Alzheimer mouse model. J. Biol. Chem. 288, 32050–32063. https://doi.org/10.1074/jbc.M113.504365 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Byers, A. L. & Yaffe, K. Depression and risk of developing dementia. Nat. Rev. Neurol. 7, 323–331. https://doi.org/10.1038/nrneurol.2011.60 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Skaper, S. D., Facci, L., Zusso, M. & Giusti, P. Synaptic Plasticity, Dementia and Alzheimer Disease. CNS Neurol. Disord. Drug Targets 16, 220–233. https://doi.org/10.2174/1871527316666170113120853 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ando, K. et al. Dysregulation of Phosphoinositide 5-Phosphatases and Phosphoinositides in Alzheimer’s Disease. Front. Neurosci. 15, 614855. https://doi.org/10.3389/fnins.2021.614855 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Goswami, D. B. et al. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 126–133. https://doi.org/10.1016/j.pnpbp.2012.12.010 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhai, W. et al. The fibroblast growth factor system in cognitive disorders and dementia. Front. Neurosci. 17, 1136266. https://doi.org/10.3389/fnins.2023.1136266 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Noda, M. et al. FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway. J. Neuroinflamm. 11, 76. https://doi.org/10.1186/1742-2094-11-76 (2014).Article 
CAS 

Google Scholar 
Wang, S., Li, Y., Jiang, C. & Tian, H. Fibroblast growth factor 9 subfamily and the heart. Appl. Microbiol. Biotechnol. 102, 605–613. https://doi.org/10.1007/s00253-017-8652-3 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chuang, J. I. et al. FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic. Biol. Med. 89, 274–286. https://doi.org/10.1016/j.freeradbiomed.2015.08.011 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yusuf, I. O. et al. Fibroblast growth factor 9 activates anti-oxidative functions of Nrf2 through ERK signalling in striatal cell models of Huntington’s disease. Free Radic. Biol. Med. 130, 256–266. https://doi.org/10.1016/j.freeradbiomed.2018.10.455 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gibson, C. L., Gray, L. J., Bath, P. M. & Murphy, S. P. Progesterone for the treatment of experimental brain injury; a systematic review. Brain 131, 318–328. https://doi.org/10.1093/brain/awm183 (2008).Article 
PubMed 

Google Scholar 
Shear, D. A., Galani, R., Hoffman, S. W. & Stein, D. G. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Exp. Neurol. 178, 59–67. https://doi.org/10.1006/exnr.2002.8020 (2002).Article 
CAS 
PubMed 

Google Scholar 
Stein, D. G. & Hoffman, S. W. Estrogen and progesterone as neuroprotective agents in the treatment of acute brain injuries. Pediatr. Rehabil. 6, 13–22. https://doi.org/10.1080/1363849031000095279 (2003).Article 
PubMed 

Google Scholar 
Singh, M., Krishnamoorthy, V. R., Kim, S., Khurana, S. & LaPorte, H. M. Brain-derived neuerotrophic factor and related mechanisms that mediate and influence progesterone-induced neuroprotection. Front. Endocrinol. 15, 1286066. https://doi.org/10.3389/fendo.2024.1286066 (2024).Zhou, M. et al. Uncovering the Oxidative Stress Mechanisms and Targets in Alzheimer’s Disease by Integrating Phenotypic Screening Data and Polypharmacology Networks. J. Alzheimers Dis. 99, S139-s156. https://doi.org/10.3233/jad-220727 (2024).Article 
CAS 
PubMed 

Google Scholar 
Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885. https://doi.org/10.1038/nrm1498 (2004).Article 
CAS 
PubMed 

Google Scholar 
Cox, A. D. & Der, C. J. The dark side of Ras: Regulation of apoptosis. Oncogene 22, 8999–9006. https://doi.org/10.1038/sj.onc.1207111 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J. & Wu, G. Y. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J .Neurosci. 25, 11288–11299. https://doi.org/10.1523/jneurosci.2284-05.2005 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vaillant, A. R. et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146, 955–966. https://doi.org/10.1083/jcb.146.5.955 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C. & Sheng, M. Control of dendritic arborization by the phosphoinositide-3’-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25, 11300–11312. https://doi.org/10.1523/jneurosci.2270-05.2005 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kirouac, L., Rajic, A. J., Cribbs, D. H. & Padmanabhan, J. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro 4. https://doi.org/10.1523/eneuro.0149-16.2017 (2017)Chen, M. J. et al. Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer’s disease. J. Neurosci. Res. 99, 1704–1721. https://doi.org/10.1002/jnr.24829 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ikedo, T. et al. Dipeptidyl Peptidase-4 inhibitor anagliptin prevents intracranial aneurysm growth by suppressing macrophage infiltration and activation. J. Am. Heart Assoc. 6 (2017). https://doi.org/10.1161/jaha.116.004777Frische, E. W. & Zwartkruis, F. J. Rap1, a mercenary among the Ras-like GTPases. Dev. Biol. 340, 1–9. https://doi.org/10.1016/j.ydbio.2009.12.043 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Hematopoietic transcription factor GFI1 promotes anchorage independence by sustaining ERK activity in cancer cells. J. Clin. Invest. 132 (2022). https://doi.org/10.1172/jci149551Li, Q. et al. Rap1 promotes proliferation and migration of vascular smooth muscle cell via the ERK pathway. Pathol. Res. Pract. 214, 1045–1050. https://doi.org/10.1016/j.prp.2018.04.007 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kosuru, R. & Chrzanowska, M. Integration of Rap1 and Calcium Signaling. Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21051616 (2020)Nancy, V., Callebaut, I., El Marjou, A. & de Gunzburg, J. The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem. 277, 15076–15084. https://doi.org/10.1074/jbc.M109983200 (2002).Article 
CAS 
PubMed 

Google Scholar 
Rampersad, S. N. et al. Cyclic AMP phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J. Biol. Chem. 285, 33614–33622. https://doi.org/10.1074/jbc.M110.140004 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, M. et al. Identifying crucial biomarkers in peripheral blood of schizophrenia and screening therapeutic agents by comprehensive bioinformatics analysis. J. Psychiatr. Res. 152, 86–96. https://doi.org/10.1016/j.jpsychires.2022.06.007 (2022).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles