The role of genetically predicted serum iron levels on neurodegenerative and cardiovascular traits

Abbaspour, N., Hurrell, R. & Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 19, 1 (2014).
Google Scholar 
Nairz, M. & Weiss, G. Iron in infection and immunity. Mol. Asp. Med. 75, 864. https://doi.org/10.1016/j.mam.2020.100864 (2020).Article 

Google Scholar 
Paul, B. T., Manz, D. H., Torti, F. M. & Torti, S. V. Mitochondria and iron: Current questions. Expert Rev. Hematol. 10, 47. https://doi.org/10.1080/17474086.2016.1268047 (2017).Article 

Google Scholar 
Emerit, J., Beaumont, C. & Trivin, F. Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother. 55, 3. https://doi.org/10.1016/S0753-3322(01)00068-3 (2001).Article 

Google Scholar 
Basuli, D., Stevens, R. G., Torti, F. M. & Torti, S. V. Epidemiological associations between iron and cardiovascular disease and diabetes. Front. Pharmacol. 5, 117. https://doi.org/10.3389/fphar.2014.00117 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Medeiros, M. S. et al. Iron and oxidative stress in Parkinson’s disease: An observational study of injury biomarkers. PLoS ONE 11, e0146129 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Moliner, P. et al. Association between norepinephrine levels and abnormal iron status in patients with chronic heart failure: Is iron deficiency more than a comorbidity? J. Am. Heart Assoc. 8, 887 (2019).Article 

Google Scholar 
Wang, L., Li, C., Chen, X., Li, S. & Shang, H. Abnormal serum iron-status indicator changes in amyotrophic lateral sclerosis (ALS) patients: A meta-analysis. Front. Neurol. 11, 380. https://doi.org/10.3389/fneur.2020.00380 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Guo, S., Mao, X., Li, X. & Ouyang, H. Association between iron status and incident coronary artery disease: a population based-cohort study. Sci. Rep. 12, 1 (2022).Article 

Google Scholar 
Eftekhari, M. H., Mozaffari-Khosravi, H., Shidfar, F. & Zamani, A. Relation between body iron status and cardiovascular risk factors in patients with cardiovascular disease. Int. J. Prev. Med. 4, 1 (2013).
Google Scholar 
De Das, S., Krishna, S. & Jethwa, A. Iron status and its association with coronary heart disease: Systematic review and meta-analysis of prospective studies. Atherosclerosis 238, 296–303 (2015).Article 

Google Scholar 
Sempos, C. T. et al. Serum ferritin and death from all causes and cardiovascular disease: The NHANES II Mortality Study. National Health and Nutrition Examination Study. Ann. Epidemiol. 10, 441–448 (2000).Article 
PubMed 

Google Scholar 
Knuiman, M. W., Divitini, M. L., Olynyk, J. K., Cullen, D. J. & Bartholomew, H. C. Serum ferritin and cardiovascular disease: A 17-year follow-up study in Busselton, Western Australia. Am. J. Epidemiol. 158, 144–149 (2003).Article 
PubMed 

Google Scholar 
Njajou, O. T. et al. Heritability of serum iron, ferritin and transferrin saturation in a genetically isolated population, the Erasmus Rucphen Family (ERF) study. Hum. Hered. 61, 1 (2006).Article 

Google Scholar 
Sayed-Tabatabaei, F. A. et al. Heritability of the function and structure of the arterial wall: Findings of the Erasmus Rucphen family (ERF) study. Stroke 36, 1 (2005).Article 

Google Scholar 
Moksnes, M. R. et al. Genome-wide meta-analysis of iron status biomarkers and the effect of iron on all-cause mortality in HUNT. Commun. Biol. 5, 591 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bell, S. et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun. Biol. 4, 1 (2021).Article 
ADS 

Google Scholar 
Tada, H., Fujino, N., Hayashi, K., Kawashiri, M. & Takamura, M. Human genetics and its impact on cardiovascular disease. J. Cardiol. 79, 5. https://doi.org/10.1016/j.jjcc.2021.09.005 (2022).Article 

Google Scholar 
Bellou, E., Stevenson-Hoare, J. & Escott-Price, V. Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiol. Dis. 142, 953. https://doi.org/10.1016/j.nbd.2020.104953 (2020).Article 

Google Scholar 
Baker, E. et al. What does heritability of Alzheimer’s disease represent? PLoS ONE 18, e0281440 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kezele, T. G. & Ćurko-Cofek, B. Age-related changes and sex-related differences in brain iron metabolism. Nutrients 12, 601. https://doi.org/10.3390/nu12092601 (2020).Article 

Google Scholar 
Badenhorst, C. E., Forsyth, A. K. & Govus, A. D. A contemporary understanding of iron metabolism in active premenopausal females. Front. Sports Act. Living 4, 937. https://doi.org/10.3389/fspor.2022.903937 (2022).Article 

Google Scholar 
Ryan, B. J., Charkoudian, N. & McClung, J. P. Consider iron status when making sex comparisons in human physiology. J. Appl. Physiol. 132, 1 (2022).
Google Scholar 
Shock, N., Greulick, R. & Andres, R. Normal Human Aging: The Baltimore Study of Aging 84 (NIH Publication, 1984).
Google Scholar 
Benyamin, B. et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat. Commun. 5, 4926 (2014).Article 
PubMed 

Google Scholar 
Zawistowski, M. et al. The Michigan genomics initiative: A biobank linking genotypes and electronic clinical records in Michigan Medicine patients. Cell Genom. 3, 100257 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, 1 (2006).Article 

Google Scholar 
Krokstad, S. et al. Cohort profile: The HUNT study, Norway. Int. J. Epidemiol. 42, 968–977 (2013).Article 
PubMed 

Google Scholar 
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Hinrichs, A. S. et al. The UCSC genome browser database: Update 2006. Nucleic Acids Res. 34, D590–D598 (2006).Article 
PubMed 

Google Scholar 
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Blauwendraat, C. et al. Investigation of autosomal genetic sex differences in Parkinson’s disease. Ann. Neurol. 90, 35–42 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636–1648 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C. A. An integrated framework for local genetic correlation analysis. Nat. Genet. 54, 274–282 (2022).Article 
PubMed 

Google Scholar 
Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sollis, E. et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).Article 
PubMed 

Google Scholar 
Kamat, M. A. et al. PhenoScanner V2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, 1 (2018).Article 

Google Scholar 
Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Byrne, R. P. et al. Sex-specific risk loci and modified MEF2C expression in ALS. MedRxiv. https://doi.org/10.1101/2024.05.25.24307829 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Shi, H., Mancuso, N., Spendlove, S. & Pasaniuc, B. Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am. J. Hum. Genet. 101, 1 (2017).Article 

Google Scholar 
van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: From theory to practice. Nat. Rev. Genet. 20, 1. https://doi.org/10.1038/s41576-019-0137-z (2019).Article 

Google Scholar 
Sheppe, A. E. F. & Edelmann, M. J. Roles of eicosanoids in regulating inflammation and neutrophil migration as an innate host response to bacterial infections. Infect. Immunity 89, 21. https://doi.org/10.1128/IAI.00095-21 (2021).Article 

Google Scholar 
Chen, X. & Holtzman, D. M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 55, 16. https://doi.org/10.1016/j.immuni.2022.10.016 (2022).Article 

Google Scholar 
Ennerfelt, H. E. & Lukens, J. R. The role of innate immunity in Alzheimer’s disease. Immunol. Rev. 297, 896. https://doi.org/10.1111/imr.12896 (2020).Article 

Google Scholar 
Wessling-Resnick, M. Iron homeostasis and the inflammatory response. Annu. Rev. Nutr. 30, 804. https://doi.org/10.1146/annurev.nutr.012809.104804 (2010).Article 

Google Scholar 
Mu, Q. et al. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci. Bull. 66, 10. https://doi.org/10.1016/j.scib.2021.02.010 (2021).Article 

Google Scholar 
Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 1489. https://doi.org/10.1038/nrg1489 (2004).Article 

Google Scholar 
Cho, Y. K. & Hee Jung, C. Hdl-c and cardiovascular risk: You don’t need to worry about extremely high HDL-C levels. J. Lipid Atheroscler. 10, 57. https://doi.org/10.12997/jla.2021.10.1.57 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ali, K. M., Wonnerth, A., Huber, K. & Wojta, J. Cardiovascular disease risk reduction by raising HDL cholesterol—Current therapies and future opportunities. Br. J. Pharmacol. 167, 1. https://doi.org/10.1111/j.1476-5381.2012.02081.x (2012).Article 

Google Scholar 
Das, S. K. et al. Females are protected from iron-overload cardiomyopathy independent of iron metabolism: Key role of oxidative stress. J. Am. Heart Assoc. 6, 1 (2017).Article 

Google Scholar 
Shapiro, J. S., Chang, H. C. & Ardehali, H. Iron and sex cross paths in the heart. J. Am. Heart Assoc. 6, 1 (2017).Article 

Google Scholar 
Li, X. et al. Iron deficiency and overload in men and woman of reproductive age, and pregnant women. Reprod. Toxicol. 118, 1 (2023).Article 

Google Scholar 
Harrison-Findik, D. D. Gender-related variations in iron metabolism and liver diseases. World J. Hepatol. 2, 1 (2010).Article 

Google Scholar 
Anderson, G. J. & Bardou-Jacquet, E. Revisiting hemochromatosis: Genetic vs phenotypic manifestations. Ann. Transl. Med. 9, 1 (2021).Article 

Google Scholar 
Hamad, M., Bajbouj, K. & Taneera, J. The case for an estrogen-iron axis in health and disease. Exp. Clin. Endocrinol. Diabetes 128, 1677. https://doi.org/10.1055/a-0885-1677 (2020).Article 

Google Scholar 
Gabrielsen, J. S., Lamb, D. J. & Lipshultz, L. I. Iron and a man’s reproductive health: The good, the bad, and the ugly. Curr. Urol. Rep. 19, 1. https://doi.org/10.1007/s11934-018-0808-x (2018).Article 

Google Scholar 
Bachman, E. et al. Testosterone suppresses hepcidin in men: A potential mechanism for testosterone-induced erythrocytosis. J. Clin. Endocrinol. Metab. 95, 1 (2010).Article 

Google Scholar 
Hayes, M. T. Parkinson’s disease and Parkinsonism. Am. J. Med. 132, 802–807 (2019).Article 
PubMed 

Google Scholar 
Olanow, C. W. & Tatton, W. G. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci. 22, 123–144 (1999).Article 
PubMed 

Google Scholar 
Grubić Kezele, T. & Ćurko-Cofek, B. Age-related changes and sex-related differences in brain iron metabolism. Nutrients 12, 1 (2020).Article 

Google Scholar 
Shi, L. et al. The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Front. Aging Neurosci. 11, 215 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
de Souza Ferreira, L. P. et al. Sex differences in Parkinson’s disease: An emerging health question. Clinics 77, 121. https://doi.org/10.1016/j.clinsp.2022.100121 (2022).Article 

Google Scholar 
Russillo, M. C. et al. Sex differences in Parkinson’s disease: From bench to bedside. Brain Sci. 12, 917. https://doi.org/10.3390/brainsci12070917 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Cerri, S., Mus, L. & Blandini, F. Parkinson’s disease in women and men: What’s the difference? J. Parkinsons Dis. 9, 501–515 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Jurado-Coronel, J. C. et al. Sex differences in Parkinson’s disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front. Neuroendocrinol. 50, 18–30 (2018).Article 
PubMed 

Google Scholar 
Song, Y.-J. et al. The effect of estrogen replacement therapy on Alzheimer’s disease and Parkinson’s disease in postmenopausal women: A meta-analysis. Front. Neurosci. 14, 157 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Paterek, A. et al. Systemic iron deficiency does not affect the cardiac iron content and progression of heart failure. J. Mol. Cell Cardiol. 159, 16–27 (2021).Article 
PubMed 

Google Scholar 
Hirsch, V. G. et al. Cardiac iron concentration in relation to systemic iron status and disease severity in non-ischaemic heart failure with reduced ejection fraction. Eur. J. Heart Fail. 22, 2038–2046 (2020).Article 
PubMed 

Google Scholar 
Schipper, H. M. Neurodegeneration with brain iron accumulation—Clinical syndromes and neuroimaging. Biochim. Biophys. Acta Mol. Basis Dis. 1822, 16. https://doi.org/10.1016/j.bbadis.2011.06.016 (2012).Article 

Google Scholar 
Wolfe, D., Dudek, S., Ritchie, M. D. & Pendergrass, S. A. Visualizing genomic information across chromosomes with PhenoGram. BioData Min. 6, 1 (2013).Article 

Google Scholar 

Hot Topics

Related Articles