Arkitekt: streaming analysis and real-time workflows for microscopy

Mahecic, D. et al. Event-driven acquisition for content-enriched microscopy. Nat. Methods 19, 1262–1267 (2022).Article 
CAS 
PubMed 

Google Scholar 
Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16, 1215–1225 (2019).Article 
CAS 
PubMed 

Google Scholar 
Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using MicroManager. Curr. Protoc. Mol. Biol. 14, 14.20 (2010).
Google Scholar 
Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).Article 
PubMed 

Google Scholar 
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
CAS 
PubMed 

Google Scholar 
Sofroniew, N. et al. Napari: a multi-dimensional image viewer for Python. Zenodo https://doi.org/10.5281/zenodo.3555620 (2022).Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Sheffield, N. C. et al. From biomedical cloud platforms to microservices: next steps in FAIR data and analysis. Sci. Data 9, 553 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).Article 
PubMed 

Google Scholar 
Galaxy, C. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).Article 

Google Scholar 
Prigent, S. et al. BioImageIT: open-source framework for integration of image data management with analysis. Nat. Methods 19, 1328–1330 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer, C. ImJoy: an open-source computational platform for the deep learning era. Nat. Methods 16, 1199–1200 (2019).Article 
CAS 
PubMed 

Google Scholar 
Alvelid, J., Damenti, M., Sgattoni, C. & Testa, I. Event-triggered STED imaging. Nat. Methods 19, 1268–1275 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beghin, A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184–1190 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gerst, R., Cseresnyes, Z. & Figge, M. T. JIPipe: visual batch processing for ImageJ. Nat. Methods 20, 168–169 (2023).Article 
CAS 
PubMed 

Google Scholar 
Casas Moreno, X., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. ImSwitch: generalizing microscope control in Python. J. Open Source Softw. https://doi.org/10.21105/joss.03394 (2021).Moore, J. et al. OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies. Nat. Methods 18, 1496–1498 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).Article 
CAS 
PubMed 

Google Scholar 
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. AnchorCell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention MICCAI 265–273 (2018).Besson, S. et al. Bringing open data to whole slide imaging. Digit Pathol. 2019, 3–10 (2019).Article 

Google Scholar 
Galland, R. et al. 3D high- and super-resolution imaging using single-objective SPIM. Nat. Methods 12, 641–644 (2015).Article 
CAS 
PubMed 

Google Scholar 
Beghin, A. et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat. Methods 19, 881–892 (2022).Article 
CAS 
PubMed 

Google Scholar 
von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).Article 

Google Scholar 
Ester, M., Kriegel, H., Sander, J. & Xu, X. Proc. 2nd International Conference on Knowledge Discovery and Data Mining 226–231 (1996).Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data streams. Front. Neuroinform. 9, 7 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Saunders, J. L. & Wehr, M. Mice can learn phonetic categories. J. Acoust. Soc. Am. 145, 1168 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).Article 
CAS 
PubMed 

Google Scholar 
Carpenter, A. E., Cimini, B. A. & Eliceiri, K. W. Smart microscopes of the future. Nat. Methods 20, 962–964 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roos, J. Workflow I – Interactive analysis – Three analysed ROIS. Zenodohttps://doi.org/10.5281/zenodo.10031633 (2023).Roos, J. Workflow II – Streaming analysis – Multi-position, multi timepoint acquisition. Zenodo https://doi.org/10.5281/zenodo.10031787 (2023).Roos, J. Workflow III – Smart Microscopy – Adaptive monitoring of cell clusters. Zenodo https://doi.org/10.5281/zenodo.10031807 (2023).

Hot Topics

Related Articles