From whole-slide image to biomarker prediction: end-to-end weakly supervised deep learning in computational pathology

Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J. N. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat. Cancer 3, 1026–1038 (2022).Article 
PubMed 

Google Scholar 
Ghaffari Laleh, N. et al. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Med. Image Anal. 79, 102474 (2022).Article 
PubMed 

Google Scholar 
Foersch, S. et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Ann. Oncol. 32, 1178–1187 (2021).Article 
CAS 
PubMed 

Google Scholar 
Klein, C. et al. Artificial intelligence for solid tumour diagnosis in digital pathology. Br. J. Pharmacol. 178, 4291–4315 (2021).Article 
CAS 
PubMed 

Google Scholar 
Woerl, A.-C. et al. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides. Eur. Urol. 78, 256–264 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hong, R., Liu, W., DeLair, D., Razavian, N. & Fenyö, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2, 100400 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kather, J. N. et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16, e1002730 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghaffari Laleh, N. et al. Deep Learning for interpretable end-to-end survival (E-ESurv) prediction in gastrointestinal cancer histopathology. Proceedings of the MICCAI Workshop on Computational Pathology. PMLR 156, 81–93 (2021).Foersch, S. et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat. Med. 29, 430–439 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wang, C.-W. et al. Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images. Comput. Med. Imaging Graph. 99, 102093 (2022).Article 
PubMed 

Google Scholar 
Ghaffari Laleh, N., Ligero, M., Perez-Lopez, R. & Kather, J. N. Facts and hopes on the use of artificial intelligence for predictive immunotherapy biomarkers in cancer. Clin. Cancer Res. 29, 316–323 (2023).Article 
PubMed 

Google Scholar 
Kather, J. N. et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 1, 789–799 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanavati, F. et al. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci. Rep. 10, 9297 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X. et al. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans. Cybern. 50, 3950–3962 (2020).Article 
PubMed 

Google Scholar 
Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bilal, M. et al. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study. Lancet Digit. Health 3, e763–e772 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schrammen, P. L. et al. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J. Pathol. 256, 50–60 (2022).Article 
CAS 
PubMed 

Google Scholar 
Echle, A. et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroenterology 159, 1406–1416.e11 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zeng, Q. et al. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J. Hepatol. 77, 116–127 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jaroensri, R. et al. Deep learning models for histologic grading of breast cancer and association with disease prognosis. NPJ Breast Cancer 8, 113 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, C. et al. Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med. Image Anal. 53, 165–178 (2019).Article 
PubMed 

Google Scholar 
Zheng, Q. et al. A weakly supervised deep learning model and human-machine fusion for accurate grading of renal cell carcinoma from histopathology slides. Cancers (Basel) 15, 3198 (2023).Article 
PubMed 

Google Scholar 
Muti, H. S. et al. The Aachen Protocol for Deep Learning Histopathology: A Hands-on Guide for Data Preprocessing. Available at https://oa.mg/work/10.5281/zenodo.3694994 (2020).Graziani, M. et al. Attention-based interpretable regression of gene expression in histology. Interpretability of Machine Intelligence in Medical Image Computing: 5th International Workshop, iMIMIC 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings 44–60 (Springer-Verlag, 2022).Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 1–15 (2020).Article 

Google Scholar 
Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wagner, S. J. et al. Built to last? Reproducibility and reusability of deep learning algorithms in computational pathology. Mod. Pathol. 37, 100350 (2023).Article 
PubMed 

Google Scholar 
Veldhuizen, G. P. et al. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study. Gastric Cancer 26, 708–720 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Muti, H. S. et al. Deep learning trained on lymph node status predicts outcome from gastric cancer histopathology: a retrospective multicentric study. Eur. J. Cancer 194, 113335 (2023).Article 
PubMed 

Google Scholar 
Saldanha, O. L. et al. Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning. Gastric Cancer 26, 264–274 (2023).Article 
CAS 
PubMed 

Google Scholar 
Niehues, J. M. et al. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study. Cell Rep. Med. 4, 100980 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wagner, S. J. et al. Transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study. Cancer Cell 41, 1650–1661.e4 (2023).Jiang, X. et al. End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study. Lancet Digit. Health 6, e33–e43 (2024).Article 
CAS 
PubMed 

Google Scholar 
Chatterji, S. et al. Prediction models for hormone receptor status in female breast cancer do not extend to males: further evidence of sex-based disparity in breast cancer. NPJ Breast Cancer 9, 91 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hewitt, K. J. et al. Direct image to subtype prediction for brain tumors using deep learning. Neurooncol. Adv. 5, vdad139 (2023).PubMed 
PubMed Central 

Google Scholar 
Saldanha, O. L. et al. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ Precis. Oncol. 7, 35 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Loeffler, C. M. L. et al. Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: a development and validation study. Preprint at https://www.medrxiv.org/content/10.1101/2023.03.08.23286975v1 (2023).El Nahhas, O. S. M. et al. Regression-based Deep-Learning predicts molecular biomarkers from pathology slides. Nat. Commun. 15, 1–253 (2024).
Google Scholar 
Wang, X. et al. Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 81, 102559 (2022).Article 
PubMed 

Google Scholar 
Causality in digital medicine. Nat. Commun. 12, 5471 (2021).Wölflein, G. et al. Benchmarking pathology feature extractors for whole slide image classification. Preprint at https://arxiv.org/abs/2311.11772 (2023).Goode, A., Gilbert, B., Harkes, J., Jukic, D. & Satyanarayanan, M. OpenSlide: a vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 4, 27 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghassemi, M., Oakden-Rayner, L. & Beam, A. L. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 3, e745–e750 (2021).Article 
CAS 
PubMed 

Google Scholar 
Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (eds Wallach, H. et al.) Vol. 32 (Curran Associates, Inc., 2019).Jorge Cardoso, M. et al. MONAI: an open-source framework for deep learning in healthcare. Preprint at https://arxiv.org/abs/2211.02701 (2022).Martinez, K. & Cupitt, J. VIPS – a highly tuned image processing software architecture. In IEEE International Conference on Image Processing 2005. Genova, Italy II–574 (IEEE, 2005).Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M. & Madabhushi, A. HistoQC: an open-source quality control tool for digital pathology slides. JCO Clin. Cancer Inform. 3, 1–7 (2019).Article 
PubMed 

Google Scholar 
Pedersen, A. et al. FastPathology: an open-source platform for deep learning-based research and decision support in digital pathology. IEEE Access 9, 58216–58229 (2021).Article 

Google Scholar 
Pocock, J. et al. TIAToolbox as an end-to-end library for advanced tissue image analytics. Commun. Med. (Lond.) 2, 120 (2022).Article 
PubMed 

Google Scholar 
Lu, M. Y. et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 555–570 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Verghese, G. et al. Computational pathology in cancer diagnosis, prognosis, and prediction—present day and prospects. J. Pathol. 260, 551–563 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Saillard, C. et al. Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides. Nat. Commun. 14, 6695 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Greenson, J. K. et al. Pathologic predictors of microsatellite instability in colorectal cancer. Am. J. Surg. Pathol. 33, 126–133 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).Ellis, M. J. et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 3, 1108–1112 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Macenko, M. et al. A method for normalizing histology slides for quantitative analysis. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1107–1110 (IEEE, 2009).Howard, F. M. et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat. Commun. 12, 4423 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986).Article 
CAS 
PubMed 

Google Scholar 
Comes, M. C. et al. A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients. Sci. Rep. 12, 20366 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, S., Suriawinata, A. A. & Hassanpour, S. MHAttnSurv: multi-head attention for survival prediction using whole-slide pathology images. Comput. Biol. Med. 158, 106883 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Sounderajah, V. et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11, e047709 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Collins, G. S. et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11, e048008 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Trautmann, K. et al. Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin. Cancer Res. 12, 6379–6385 (2006).Article 
CAS 
PubMed 

Google Scholar 
Lin, E. I. et al. Mutational profiling of colorectal cancers with microsatellite instability. Oncotarget 6, 42334–42344 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Boland, C. R. & Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 138, 2073–2087.e3 (2010).Article 
CAS 
PubMed 

Google Scholar 
Battaglin, F., Naseem, M., Lenz, H.-J. & Salem, M. E. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin. Adv. Hematol. Oncol. 16, 735–745 (2018).PubMed 
PubMed Central 

Google Scholar 
Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV) 618–626 (IEEE, 2017).Pataki, B. Á. et al. HunCRC: annotated pathological slides to enhance deep learning applications in colorectal cancer screening. Sci. Data 9, 370 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng, J. et al. Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma. Nat. Commun. 11, 1778 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles