The d3GHR carrier epigenome in Druze clan longevity

Jablonka, E. & Lamb, M. J. The inheritance of acquired epigenetic variations. Int. J. Epidemiol. 44, 395–401 (2015).
Google Scholar 
Richards, E. J. Inherited epigenetic variation – Revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).Article 
CAS 
PubMed 

Google Scholar 
Handy, D. E., Castro, R. & Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 123, 2145–2156 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Smith, Z. D. & Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).Article 
CAS 
PubMed 

Google Scholar 
Feng, S., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622–627 (2010).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).Article 
CAS 
PubMed 

Google Scholar 
Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. https://doi.org/10.1186/s13059-016-1066-1 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).Article 
CAS 
PubMed 

Google Scholar 
Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).Article 
CAS 
PubMed 

Google Scholar 
Simmons, D. Epigenetic Influences and Disease. Nat. Educ. 1, (2008).Jin, Z. & Liu, Y. DNA methylation in human diseases. Genes Dis. 5, 1–8 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brown, R. & Strathdee, G. Epigenomics and epigenetic therapy of cancer. Trends Mol. Med. 8, S43–S48 (2002).Article 
CAS 
PubMed 

Google Scholar 
Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).Article 
CAS 
PubMed 

Google Scholar 
Dedeurwaerder, S. et al. Evaluation of the infinium methylation 450K technology. Epigenomics 3, 771–784 (2011).Article 
CAS 
PubMed 

Google Scholar 
Barros-Silva, D., Marques, C. J., Henrique, R. & Jerónimo, C. Profiling DNA methylation based on next-generation sequencing approaches: New insights and clinical applications. Genes 9, 429 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Noguera-Castells, A., García-Prieto, C. A., Álvarez-Errico, D. & Esteller, M. Validation of the new EPIC DNA methylation microarray (900K EPIC v2) for high-throughput profiling of the human DNA methylome. Epigenetics 18, 2185742 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Filopanti, M. et al. The exon 3-deleted growth hormone receptor: Molecular and functional characterization and impact on GH/IGF-I axis in physiological and pathological conditions. J. Endocrinol. Investig. https://doi.org/10.1007/BF03346731 (2011).Article 

Google Scholar 
Dos Santos, C. et al. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat. Genet. https://doi.org/10.1038/ng1379 (2004).Article 
PubMed 

Google Scholar 
Pantel, J. et al. Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. J. Biol. Chem. https://doi.org/10.1074/jbc.m001615200 (2000).Article 
PubMed 

Google Scholar 
Audí, L. et al. Exon 3-deleted/full-length growth hormone receptor polymorphism genotype frequencies in Spanish short small-for-gestational-age (SGA) children and adolescents (n = 247) and in an adult control population (n = 289) show increased fl/fl in short SGA. J. Clin. Endocrinol. Metab. 91, 5038–5043 (2006).Article 
PubMed 

Google Scholar 
Montefusco, L. et al. D3-Growth hormone receptor polymorphism in acromegaly: Effects on metabolic phenotype. Clin. Endocrinol. (Oxf). https://doi.org/10.1111/j.1365-2265.2009.03703.x (2010).Article 
PubMed 

Google Scholar 
Ben-Avraham, D. et al. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci. Adv. https://doi.org/10.1126/sciadv.1602025 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Butler, M. G., Hossain, W., Hassan, M. & Manzardo, A. M. Growth hormone receptor (GHR) gene polymorphism and scoliosis in Prader-Willi syndrome. Growth Horm. IGF Res. 39, 29–33 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wegmann, M. G. et al. The exon3-deleted growth hormone receptor gene polymorphism (d3-GHR) is associated with insulin and spontaneous growth in short SGA children (NESGAS). Growth Horm. IGF Res. 35, 45–51 (2017).Article 
CAS 
PubMed 

Google Scholar 
Garrido, N. P. et al. Growth hormone receptor gene polymorphism. Spontaneous catch up growth in small for gestational age patients. Medicina (B Aires) 81, 1669–9106 (2021).
Google Scholar 
Bernabeu, I. et al. The exon 3-deleted growth hormone receptor is associated with better response to pegvisomant therapy in acromegaly. J. Clin. Endocrinol. Metab. 95, 222–229 (2010).Article 
CAS 
PubMed 

Google Scholar 
Dörr, H. G. et al. Different relationships between the first 2 years on growth hormone treatment and the d3-growth hormone receptor polymorphism in short small-for-gestational-age (SGA) children. Clin. Endocrinol. 75, 656–660 (2011).Article 

Google Scholar 
Firro, K. M. The Druze faith: Origin, development and interpretation. Arabica 58, 76–99 (2011).Article 

Google Scholar 
Jones, P. A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).Article 
CAS 
PubMed 

Google Scholar 
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).Article 
CAS 
PubMed 

Google Scholar 
Phillips, M. S. et al. The structural organization of the human skeletal muscle ryanodine receptor (RYR1) gene. Genomics 34, 24–41 (1996).Article 
CAS 
PubMed 

Google Scholar 
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. https://doi.org/10.1186/gb-2013-14-10-r115 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell https://doi.org/10.1016/j.molcel.2012.10.016 (2013).Article 
PubMed 

Google Scholar 
Artemov, A. V. et al. Genome-wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions. Mol. Biol. Evol. 34, 2203–2213 (2017).Article 
CAS 
PubMed 

Google Scholar 
Rubenstein, D. R. et al. Sex-specific fitness effects of unpredictable early life conditions are associated with DNA methylation in the avian glucocorticoid receptor. Mol. Ecol. 25, 1714–1728 (2016).Article 
CAS 
PubMed 

Google Scholar 
Heckwolf, M. J. et al. Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation. Sci. Adv. 6, eaaz1138 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Husby, A. Wild epigenetics: Insights from epigenetic studies on natural populations. Proc. R. Soc. B: Biol. Sci. 289, 20211633 (2022).Article 
CAS 

Google Scholar 
Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39(1), 61–69 (2007).Article 
CAS 
PubMed 

Google Scholar 
Lappalainen, T. & Greally, J. M. Associating cellular epigenetic models with human phenotypes. Nat. Rev. Genet. 18, 441–451 (2017).Article 
CAS 
PubMed 

Google Scholar 
Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chatterjee, A. et al. Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation. Sci. Rep. 5, 17328 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, F. F. et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 6, 623–629 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coit, P. et al. Ethnicity-specific epigenetic variation in naïve CD4+ T cells and the susceptibility to autoimmunity. Epigenet. Chromatin 8, 1–13 (2015).Article 

Google Scholar 
Renehan, A. G. et al. Growth hormone receptor polymorphism and growth hormone therapy response in children: A bayesian meta-analysis. Am. J. Epidemiol. 175, 867–877 (2012).Article 
PubMed 

Google Scholar 
Wassenaar, M. J. E. et al. Impact of the exon 3-deleted Growth Hormone (GH) receptor polymorphism on baseline height and the growth response to recombinant human GH therapy in GH-Deficient (GHD) and non-GHD children with short stature: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 94, 3721–3730 (2009).Article 
CAS 
PubMed 

Google Scholar 
Xiao, F. H., Kong, Q. P., Perry, B. & He, Y. H. Progress on the role of DNA methylation in aging and longevity. Brief. Funct. Genom. 15, elw009 (2016).Article 

Google Scholar 
Grönniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Ong, M. L. & Holbrook, J. D. Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell 13, 142–155 (2014).Article 
CAS 
PubMed 

Google Scholar 
Bjornsson, H. T., Daniele Fallin, M. & Feinberg, A. P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350–358 (2004).Article 
CAS 
PubMed 

Google Scholar 
Horvath, S. et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 13, 1–18 (2012).Article 

Google Scholar 
Unnikrishnan, A. et al. Revisiting the genomic hypomethylation hypothesis of aging. Ann. N. Y. Acad. Sci. 1418, 69–79 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lin, Q. et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging 8, 394 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McGreevy, K. M. et al. DNAmFitAge: biological age indicator incorporating physical fitness. Aging 15, 3904 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levine, M. E. et al. DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging 7, 690 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, Y. et al. Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine 5, 68–73 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Ambatipudi, S. et al. DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur. J. Cancer 75, 299–307 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Salameh, Y., Bejaoui, Y. & El Hajj, N. DNA methylation biomarkers in aging and age-related diseases. Front. Genet. 11, 480672 (2020).Article 

Google Scholar 
Aryee, M. J. et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Peters, T. J. et al. De novo identification of differentially methylated regions in the human genome. Epigenet. Chromatin 8, 1–16 (2015).Article 

Google Scholar 

Hot Topics

Related Articles