Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes

Kato T, Gupta M, Yamaguchi D, Gan KP, Nakayama M. Supramolecular association and nanostructure formation of liquid crystals and polymers for new functional materials. Bull Chem Soc Jpn. 2021;94:357–76.Article 
CAS 

Google Scholar 
Wang S, Urban MW. Self-healing polymers. Nat Rev Mater. 2020;5:562–83.Article 
CAS 

Google Scholar 
Li B, Cao P-F, Saito T, Sokolov AP. Intrinsically self-healing polymers: from mechanistic insight to current challenges. Chem Rev. 2023;123:701–35.Article 
CAS 
PubMed 

Google Scholar 
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chem Commun. 2020;56:4381–95.Article 
CAS 

Google Scholar 
Noro A, Hayashi M, Matsushita Y. Design and properties of supramolecular polymer gels. Soft Matter. 2012;8:6416–29.Article 
CAS 

Google Scholar 
Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.Article 
CAS 

Google Scholar 
Kobayashi Y. Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polym J. 2021;53:505–13.Article 
CAS 

Google Scholar 
Kawai Y, Park J, Ishii Y, Urakawa O, Murayama S, Ikura R, et al. Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Mater. 2022;14:32.Article 
CAS 

Google Scholar 
Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, et al. A thermally re-mendable cross-linked polymeric material. Science. 2002;295:1698–702.Article 
CAS 
PubMed 

Google Scholar 
Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science. 2011;334:965–8.Article 
CAS 
PubMed 

Google Scholar 
Otsuka H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J. 2013;45:879–91.Article 
CAS 

Google Scholar 
Hayashi M, Oba Y, Kimura T, Takasu A. Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-n-alkylation bond exchange. Polym J. 2021;53:835–40.Article 
CAS 

Google Scholar 
Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc. 2014;136:6969–77.Article 
CAS 
PubMed 

Google Scholar 
Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359:72–6.Article 
CAS 
PubMed 

Google Scholar 
Li Z, Zhu Y-L, Niu W, Yang X, Jiang Z, Lu Z-Y, et al. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv Mater. 2021;33:2101498.Article 
CAS 

Google Scholar 
Kuo D, Sakamoto T, Torii S, Liu M, Katayama H, Kato T. Removal of viruses from their cocktail solution by liquid-crystalline water-treatment membranes. Polym J. 2022;54:821–5.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Uchida J, Yoshio M, Kato T. Self-Healing and shape memory functions exhibited by supramolecular liquid-crystalline networks formed by combination of hydrogen bonding interactions and coordination bonding. Chem Sci. 2021;12:6091–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li C-H, Wang C, Keplinger C, Zuo J-L, Jin L, Sun Y, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem. 2016;8:618–24.Article 
CAS 
PubMed 

Google Scholar 
Filippidi E, Cristiani TR, Eisenbach CD, Waite JH, Israelachvili JN, Ahn BK, et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science. 2017;358:502–5.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Miwa Y, Taira K, Kurachi J, Udagawa T, Kutsumizu S. A gas-plastic elastomer that quickly self-heals damage with the aid of Co2 gas. Nat Commun. 2019;10:1828.Article 
PubMed 
PubMed Central 

Google Scholar 
Brézault A, Perrin P, Sanson N. Multiresponsive supramolecular Poly(N-Isopropylacrylamide) microgels. Macromolecules. 2024;57:2651–60.Article 

Google Scholar 
Takahashi R, Udagawa T, Hashimoto K, Kutsumizu S, Miwa Y. Effect of the Mg2+ ratio on the mechanical and self-healing properties of polyisoprene ionomers co-neutralized with Na+ and Mg2 + . Polym J. 2024;56:699-704.Scott Lokey R, Iverson BL. Synthetic molecules that fold into a pleated secondary structure in solution. Nature. 1995;375:303–5.Article 

Google Scholar 
Wang W, Li L-S, Helms G, Zhou H-H, Li ADQ. To Fold or to Assemble. ? J Am Chem Soc. 2003;125:1120–1.Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chem Commun. 2009;28:6717–9.Urban MW, Davydovich D, Yang Y, Demir T, Zhang Y, Casabianca L. Key-and-lock commodity self-healing copolymers. Science. 2018;362:220–5.Article 
CAS 
PubMed 

Google Scholar 
Gaikwad S, Urban MW. Ring-and-lock interactions in self-healable styrenic copolymers. J Am Chem Soc. 2023;145:9693–9.Article 
CAS 
PubMed 

Google Scholar 
Lai H, Jin C, Park J, Ikura R, Takashima Y, Ouchi M. A transformable and bulky methacrylate monomer that enables the synthesis of an Mma-Nba alternating copolymer: sequence-dependent self-healing properties. Angew Chem Int Ed. 2023;62:e202218597.Article 
CAS 

Google Scholar 
Zhao Y, Yin R, Wu H, Wang Z, Zhai Y, Kim K, et al. Sequence-enhanced self-healing in “lock-and-key” copolymers. ACS Macro Lett. 2023;12:475–80.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nghiem TT, Nguyen BL, Huyen LT, Kawahara S. A novel approach to prepare self-healing vulcanized natural rubber using tetramethylthiuram disulfide. Polym J. 2023;55:1097–1102.Article 
CAS 

Google Scholar 
Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design—the versatility of cyclodextrin-based host–guest. Chem Angew Chem Int Ed. 2017;56:8350–69.Article 
CAS 

Google Scholar 
Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Supramolecular materials cross-linked by host–guest inclusion complexes: the effect of side chain molecules on mechanical properties. Macromolecules. 2017;50:3254–61.Article 
CAS 

Google Scholar 
Huang Z, Chen X, O’Neill SJK, Wu G, Whitaker DJ, Li J, et al. Highly compressible glass-like supramolecular polymer networks. Nat Mater. 2022;21:103–9.Article 
CAS 
PubMed 

Google Scholar 
Susa A, Bose RK, Grande AM, van der Zwaag S, Garcia SJ. Effect of the dianhydride/branched diamine ratio on the architecture and room temperature healing behavior of polyetherimides. ACS Appl Mater Interfaces. 2016;8:34068–79.Article 
CAS 
PubMed 

Google Scholar 
Yasuda Y, Nakagawa S, Houjou H, Yoshie N, Morita H. Coarse-grained molecular dynamics simulations of dynamic bond elastomers using interbead potentials for entropy- and enthalpy-driven mechanisms in their dynamics and mechanical properties. Macromolecules. 2023;56:7432–44.Article 
CAS 

Google Scholar 
Stadler R, De Lucca Freitas L. Relaxation behavior of linear polymer chains with statistically distributed functional groups. Macromolecules. 1989;22:714–9.Article 
CAS 

Google Scholar 
Leibler L, Rubinstein M, Colby RH. Dynamics of reversible networks. Macromolecules. 1991;24:4701–7.Article 
CAS 

Google Scholar 
Baxandall LG. Dynamics of reversibly crosslinked chains. Macromolecules. 1989;22:1982–8.Article 
CAS 

Google Scholar 
Hu X, Zhou J, Daniel WFM, Vatankhah-Varnoosfaderani M, Dobrynin AV, Sheiko SS. Dynamics of dual networks: strain rate and temperature effects in hydrogels with reversible h-bonds. Macromolecules. 2017;50:652–9.Article 
CAS 

Google Scholar 
Cao X, Yu X, Qin J, Chen Q. Reversible gelation of entangled ionomers. Macromolecules. 2019;52:8771–80.Article 
CAS 

Google Scholar 
Golkaram M, Loos K. A critical approach to polymer dynamics in supramolecular polymers. Macromolecules. 2019;52:9427–44.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang R, Zhang C, Yang Z, Wu Q, Sun P, Wang X. Hierarchical dynamics in a transient polymer network cross-linked by orthogonal dynamic bonds. Macromolecules. 2020;53:5937–49.Article 
CAS 

Google Scholar 
Katashima T. Rheological studies on polymer networks with static and dynamic crosslinks. Polym J. 2021;53:1073–82.Article 
CAS 

Google Scholar 
Ahmadi M, Jangizehi A, Seiffert S. Backbone polarity tunes sticker clustering in hydrogen-bonded supramolecular polymer networks. Macromolecules. 2022;55:5514–26.Article 
CAS 

Google Scholar 
Cai PC, Su B, Zou L, Webber MJ, Heilshorn SC, Spakowitz AJ. Rheological characterization and theoretical modeling establish molecular design rules for tailored dynamically associating polymers. ACS Cent Sci. 2022;8:1318–27.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martins ML, Zhao X, Demchuk Z, Luo J, Carden GP, Toleutay G, et al. Viscoelasticity of polymers with dynamic covalent bonds: concepts and misconceptions. Macromolecules. 2023;56:8688–96.Article 
CAS 

Google Scholar 
Xia J, Kalow JA, Olvera de la Cruz M. Structure, dynamics, and rheology of vitrimers. Macromolecules. 2023;56:8080–93.Article 
CAS 

Google Scholar 
Ge S, Samanta S, Li B, Carden GP, Cao P-F, Sokolov AP. Unravelling the mechanism of viscoelasticity in polymers with phase-separated dynamic bonds. ACS Nano. 2022;16:4746–55.Article 
CAS 
PubMed 

Google Scholar 
Carden P, Ge S, Zhao S, Li B, Samanta S, Sokolov AP. Influence of molecular architecture on the viscoelastic properties of polymers with phase-separated dynamic bonds. Macromolecules. 2023;56:5173–80.Article 
CAS 

Google Scholar 
Watase M, Nishinari K. Effects of the degree of saponification and concentration on the thermal and rheological properties of Poly(Vinyl Alcohol)-dimethyl sulfoxide-water gels. Polym J. 1989;21:567–75.Article 
CAS 

Google Scholar 
Ohkura M, Kanaya T, Kaji K. Gelation rates of Poly(Vinyl Alcohol) solution. Polymer. 1992;33:5044–8.Article 
CAS 

Google Scholar 
Hoshino H, Okada S, Urakawa H, Kajiwara K. Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym Bull. 1996;37:237–44.Article 
CAS 

Google Scholar 
Kanaya T, Takahashi N, Takeshita H, Ohkura M, Nishida K, Kaji K. Structure and dynamics of Poly(Vinyl Alcohol) gels in mixtures of dimethyl sulfoxide and water. Polym J. 2012;44:83–94.Article 
CAS 

Google Scholar 
Mathis L, Chen Y, Shull KR. Tuning the viscoelasticity of hydrogen-bonded polymeric materials through solvent composition. Macromolecules. 2018;51:3975–82.Article 
CAS 

Google Scholar 
Costanzo S, Banc A, Louhichi A, Chauveau E, Wu B, Morel M-H, et al. Tailoring the viscoelasticity of polymer gels of gluten proteins through solvent quality. Macromolecules. 2020;53:9470–9.Article 
CAS 

Google Scholar 
Tanaka F. Thermoreversible gelation of associating polymers in hydrogen-bonding mixed solvents. Langmuir. 2022;38:5098–10.Article 
CAS 
PubMed 

Google Scholar 
Tanaka F. Thermoreversible gelation interfering with phase separation in multicomponent mixtures of associating polymers. Macromolecules. 2022;55:5233–48.Article 
CAS 

Google Scholar 
Nakahata M, Takashima Y, Harada A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host–guest interaction. Macromol Rapid Commun. 2016;37:86–92.Article 
CAS 
PubMed 

Google Scholar 
Konishi S, Kashiwagi Y, Watanabe G, Osaki M, Katashima T, Urakawa O, et al. Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polym Chem. 2020;11:6811–20.Article 
CAS 

Google Scholar 
Fang L, Brown W, Hvidt S. Static and dynamic properties of polyacrylamide gels and solutions in mixtures of water and glycerol: a comparison of the application of mean-field and scaling theories. Macromolecules. 1992;25:3137–42.Article 
CAS 

Google Scholar 
Hopkins SD, Gogovi GK, Weisel E, Handler RA, Blaisten-Barojas E. Polyacrylamide in glycerol solutions from an atomistic perspective of the energetics, structure, and dynamics. AIP Adv. 2020;10:085011.Article 
CAS 

Google Scholar 
Segur JB, Oberstar HE. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 1951;43:2117–20.Article 
CAS 

Google Scholar 
Winter HH, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol. 1986;30:367–82.Article 
CAS 

Google Scholar 

Hot Topics

Related Articles