Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function

Dantzler, W. H. Comparative Physiology of the Vertebrate Kidney (Springer Science & Business Media, 2012).Cockwell, P. & Fisher, L.-A. The global burden of chronic kidney disease. Lancet 395, 662–664 (2020).Article 
PubMed 

Google Scholar 
Akrawi, D. S. et al. Heritability of end-stage renal disease: a Swedish adoption study. Nephron 138, 157–165 (2018).Article 
PubMed 

Google Scholar 
Arpegård, J. et al. Comparison of heritability of cystatin C- and creatinine-based estimates of kidney function and their relation to heritability of cardiovascular disease. J. Am. Heart Assoc. 4, e001467 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Raggi, P. et al. Heritability of renal function and inflammatory markers in adult male twins. Am. J. Nephrol. 32, 317–323 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, H. et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat. Genet. 54, 950–962 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sheng, X. et al. Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. Nat. Genet. 53, 1322–1333 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wuttke, M. et al. Imputation-powered whole-exome analysis identifies genes associated with kidney function and disease in the UK Biobank. Nat. Commun. 14, 1287 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866–1875 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Connally, N. J. et al. The missing link between genetic association and regulatory function. eLife 11, e74970 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stevens, L. A., Coresh, J., Greene, T. & Levey, A. S. Assessing kidney function—measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473–2483 (2006).Article 
CAS 
PubMed 

Google Scholar 
Sieber, K. B. et al. Integrated functional genomic analysis enables annotation of kidney genome-wide association study loci. J. Am. Soc. Nephrol. 30, 421 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Inker, L. A. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nat. Commun. 12, 4350 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tin, A. & Köttgen, A. Genome-wide association studies of CKD and related traits. Clin. J. Am. Soc. Nephrol. 15, 1643 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marable, S. S., Chung, E. & Park, J.-S. Hnf4a is required for the development of Cdh6-expressing progenitors into proximal tubules in the mouse kidney. J. Am. Soc. Nephrol. 31, 2543 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Di-Poï, N., Zákány, J. & Duboule, D. Distinct roles and regulations for Hoxd genes in metanephric kidney development. PLoS Genet. 3, e232 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Khalili, H. et al. Developmental origins for kidney disease due to Shroom3 deficiency. J. Am. Soc. Nephrol. 27, 2965 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Muntner, P., Winston, J., Uribarri, J., Mann, D. & Fox, C. S. Overweight, obesity, and elevated serum cystatin C levels in adults in the United States. Am. J. Med. 121, 341–348 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stevens, L. A. et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75, 652–660 (2009).Article 
CAS 
PubMed 

Google Scholar 
Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wyss, M. & Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 80, 1107–1213 (2000).Article 
CAS 
PubMed 

Google Scholar 
Lepist, E.-I. et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 86, 350–357 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tanihara, Y. et al. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem. Pharmacol. 74, 359–371 (2007).Article 
CAS 
PubMed 

Google Scholar 
Ciarimboli, G. et al. Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin. Cancer Res. 18, 1101–1108 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Devuyst, O. et al. Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Prim. 5, 1–20 (2019).
Google Scholar 
Napolitano, G. et al. A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome. Nature 585, 597–602 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marable, S. S., Chung, E., Adam, M., Potter, S. S. & Park, J.-S. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight 3, e97497 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Marneros, A. G. AP-2β/KCTD1 Control distal nephron differentiation and protect against renal fibrosis. Dev. Cell 54, 348–366.e5 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Somlo, S. & Mundel, P. Getting a foothold in nephrotic syndrome. Nat. Genet. 24, 333–335 (2000).Article 
CAS 
PubMed 

Google Scholar 
Teumer, A. et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 10, 4130 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Gekle, M. Renal tubule albumin transport. Annu. Rev. Physiol. 67, 573–594 (2005).Article 
CAS 
PubMed 

Google Scholar 
Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lorenz-Depiereux, B. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium–phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet. 78, 193–201 (2006).Article 
CAS 
PubMed 

Google Scholar 
Schlingmann, K. P. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 365, 410–421 (2011).Article 
CAS 
PubMed 

Google Scholar 
Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).Article 
CAS 
PubMed 

Google Scholar 
Tanphaichitr, V. S. et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J. Clin. Invest. 102, 2173–2179 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bruce, L. J. et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J. Clin. Invest. 100, 1693–1701 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rungroj, N. et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin. Genet. 94, 409–418 (2018).Article 
CAS 
PubMed 

Google Scholar 
Onuchic, L. F. et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 70, 1305–1317 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ward, C. J. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 30, 259–269 (2002).Article 
PubMed 

Google Scholar 
The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).Article 

Google Scholar 
Polymeropoulos, M. H. et al. The gene for the Ellis-van Creveld syndrome is located on chromosome 4p16. Genomics 35, 1–5 (1996).Article 
CAS 
PubMed 

Google Scholar 
Henry, I. et al. The structural gene for aldolase B (ALDB) maps to 9q13→32. Ann. Hum. Genet. 49, 173–180 (1985).Article 
CAS 
PubMed 

Google Scholar 
Oikawa, S. et al. Apolipoprotein E Sendai (arginine 145→proline): a new variant associated with lipoprotein glomerulopathy. J. Am. Soc. Nephrol. 8, 820–823 (1997).Article 
CAS 
PubMed 

Google Scholar 
Kantarci, S. et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai–Barrow and facio-oculo-acoustico-renal syndromes. Nat. Genet. 39, 957–959 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kleta, R. et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. 36, 999–1002 (2004).Article 
CAS 
PubMed 

Google Scholar 
Kaplan, J. M. et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).Article 
CAS 
PubMed 

Google Scholar 
Horikawa, Y. et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat. Genet. 17, 384–385 (1997).Article 
CAS 
PubMed 

Google Scholar 
Ulinski, T. et al. Renal phenotypes related to hepatocyte nuclear factor-1β (TCF2) mutations in a pediatric cohort. J. Am. Soc. Nephrol. 17, 497–503 (2006).Article 
CAS 
PubMed 

Google Scholar 
Faguer, S. et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 80, 768–776 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hamilton, A. J. et al. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J. Med. Genet. 51, 165–169 (2014).Article 
CAS 
PubMed 

Google Scholar 
Vivante, A. et al. A dominant mutation in nuclear receptor interacting protein 1 causes urinary tract malformations via dysregulation of retinoic acid signaling. J. Am. Soc. Nephrol. 28, 2364 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J. & Sun, Z. Qilin is essential for cilia assembly and normal kidney development in zebrafish. PLoS ONE 6, e27365 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schell, C. et al. The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier. Proc. Natl Acad. Sci. USA 114, E4621–E4630 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Verissimo, T. et al. PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells. Am. J. Physiol. Ren. Physiol. 324, F532–F543 (2023).Article 
CAS 

Google Scholar 
Hasegawa, K., Sakamaki, Y., Tamaki, M. & Wakino, S. PCK1 protects against mitoribosomal defects in diabetic nephropathy in mouse models. J. Am. Soc. Nephrol. 34, 1343 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, C. et al. Loss of DEPTOR in renal tubules protects against cisplatin-induced acute kidney injury. Cell Death Dis. 9, 441 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Centini, R. et al. Loss of Fnip1 alters kidney developmental transcriptional program and synergizes with TSC1 loss to promote mTORC1 activation and renal cyst formation. PLoS ONE 13, e0197973 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Phelep, A. et al. MITF-a controls branching morphogenesis and nephron endowment. PLoS Genet. 13, e1007093 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Veikkolainen, V. et al. ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. J. Am. Soc. Nephrol. 23, 112 (2012).Article 
CAS 
PubMed 

Google Scholar 
Zeng, F., Miyazawa, T., Kloepfer, L. A. & Harris, R. C. ErbB4 deletion accelerates renal fibrosis following renal injury. Am. J. Physiol. Ren. Physiol. 314, F773–F787 (2018).Article 
CAS 

Google Scholar 
Xu, C. et al. Tubule-specific Mst1/2 deficiency induces CKD via YAP and non-YAP mechanisms. J. Am. Soc. Nephrol. 31, 946 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gessler, S. et al. Control of directed cell migration after tubular cell injury by nucleotide signaling. Int. J. Mol. Sci. 23, 7870 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kishi, S. et al. Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J. Clin. Invest. 129, 4797–4816 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gong, Y. et al. KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc. Natl Acad. Sci. USA 112, 4340–4345 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Menon, M. C. et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J. Clin. Invest. 125, 208–221 (2015).Article 
PubMed 

Google Scholar 
Messaoudi, S. et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat. Commun. 6, 8835 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hinze, C. et al. GRHL2 is required for collecting duct epithelial barrier function and renal osmoregulation. J. Am. Soc. Nephrol. 29, 857 (2018).Article 
CAS 
PubMed 

Google Scholar 
Werth, M. et al. Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. eLife 6, e24265 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Roux, M., Bouchard, M. & Kmita, M. Multifaceted Hoxa13 function in urogenital development underlies the Hand–Foot–Genital Syndrome. Hum. Mol. Genet. 28, 1671–1681 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ma, M. K. M., Yung, S. & Chan, T. M. mTOR inhibition and kidney diseases. Transplantation 102, S32–S40 (2018).Article 
CAS 
PubMed 

Google Scholar 
McConnachie, D. J., Stow, J. L. & Mallett, A. J. Ciliopathies and the kidney: a review. Am. J. Kidney Dis. 77, 410–419 (2021).Article 
CAS 
PubMed 

Google Scholar 
Singh, P., Harris, P. C., Sas, D. J. & Lieske, J. C. The genetics of kidney stone disease and nephrocalcinosis. Nat. Rev. Nephrol. 18, 224–240 (2022).Article 
PubMed 

Google Scholar 
Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom 2, 100168 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Y., Cheng, C. N., Verdun, V. A. & Wingert, R. A. Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Dev. Biol. 386, 111–122 (2014).Article 
CAS 
PubMed 

Google Scholar 
Hoyt, P. R. et al. The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech. Dev. 65, 55–70 (1997).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J. Clin. Invest. 129, 2374–2389 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bouchard, M., Souabni, A., Mandler, M., Neubüser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16, 2958–2970 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, L. et al. Bone marrow mesenchymal stem cells ameliorate cisplatin-induced renal fibrosis via miR-146a-5p/Tfdp2 axis in renal tubular epithelial cells. Front. Immunol. 11, 623693 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eijkelenboom, A. & Burgering, B. M. T. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).Article 
CAS 
PubMed 

Google Scholar 
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kelley, D. R. et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res. 28, 739–750 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alda-Catalinas, C. et al. Mapping the functional impact of non-coding regulatory elements in primary T cells through single-cell CRISPR screens. Genome Biol. 25, 42 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baigent, C. et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).Article 

Google Scholar 
Wheeler, D. C. et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 100, 215–224 (2021).Article 
CAS 
PubMed 

Google Scholar 
Geng, H. et al. Inhibition of autoregulated TGFβ signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. Am. J. Pathol. 174, 1291–1308 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, J. S. et al. N-myc downstream regulated gene 1 (ndrg1) functions as a molecular switch for cellular adaptation to hypoxia. eLife 11, e74031 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, L. et al. Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice. Kidney Int. 82, 867–877 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pan, J. S.-C. et al. Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J. Am. Soc. Nephrol. 26, 364–378 (2015).Article 
PubMed 

Google Scholar 
Chang-Panesso, M. et al. FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501–5517 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schlosser, P. et al. Meta-analyses identify DNA methylation associated with kidney function and damage. Nat. Commun. 12, 7174 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lun, A. T. L., Chen, Y. & Smyth, G. K. It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol. Biol. 1418, 391–416 (2016).Article 
PubMed 

Google Scholar 
Corces, M. R. et al. An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smith, J. P. et al. PEPATAC: an optimized pipeline for ATAC–seq data analysis with serial alignments. NAR Genom. Bioinform. 3, lqab101 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the “Sum of Single Effects” model. PLoS Genet. 18, e1010299 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kolberg, L. et al. g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51, W207–W212 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Methodol. 57, 289–300 (1995).Article 

Google Scholar 
Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).CAS 
PubMed 

Google Scholar 
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Alerasool, N., Segal, D., Lee, H. & Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 17, 1093–1096 (2020).Article 
CAS 
PubMed 

Google Scholar 
Downloads Software Single Cell Gene Expression Official 10× Genomics Support. https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/7.0/Heaton, H. et al. Souporcell: robust clustering of single-cell RNA–seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Replogle, J. M. Guide_calling. GitHub https://github.com/josephreplogle/guide_calling (2023).Shuai, R., Kathail, P. & Chung, R. ni-lab/kidney-finemapping: v0. Zenodo https://doi.org/10.5281/zenodo.13225916 (2024).Sevim, V. ucsf-lgr/ckd-workflow: Release 1. Zenodo https://doi.org/10.5281/zenodo.12747171 (2024).

Hot Topics

Related Articles