Immunogenetic profiles of 9 human herpes virus envelope glycoproteins

Staras, A. et al. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin. Infect. Dis. 43, 1143–1151. https://doi.org/10.1086/508173 (2006).Article 
PubMed 

Google Scholar 
Wald, A. & Corey, L. Persistence in the population: epidemiology, transmission. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Chapter 36 (eds Arvin, A. et al.) (Cambridge University Press, 2007).
Google Scholar 
McQuillan, G., Kruszon-Moran, D., Flagg, E. W. & Paulose-Ram, R. Prevalence of herpes simplex virus type 1 and type 2 in persons aged 14–49: United States, 2015–2016. NCHS Data Brief, no 304. Hyattsville, MD: National Center for Health Statistics; 2018.Ye, S. et al. An atlas of human viruses provides new insights into diversity and tissue tropism of human viruses. Bioinformatics. 38, 3087–3093. https://doi.org/10.1093/bioinformatics/btac275 (2022).Article 
PubMed 

Google Scholar 
De Francesco, M. A. Herpesviridae, neurodegenerative disorders and autoimmune diseases: What is the relationship between them?. Viruses. 16, 133. https://doi.org/10.3390/v16010133 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Morales-Sánchez, A. & Fuentes-Pananá, E. M. Human viruses and cancer. Viruses 6, 4047–4079. https://doi.org/10.3390/v6104047 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339. https://doi.org/10.1038/nri.2017.143 (2018).Article 
PubMed 

Google Scholar 
Blackwell, J. M., Jamieson, S. E. & Burgner, D. HLA and infectious diseases. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00048-08 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
James, L. M. & Georgopoulos, A. P. Breast cancer, viruses, and human leukocyte antigen (HLA). Sci. Rep. 14, 16179. https://doi.org/10.1038/s41598-024-65707-9 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Madeleine, M. M. et al. Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res. 68, 3532–3539. https://doi.org/10.1158/0008-5472.CAN-07-6471 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323. https://doi.org/10.1146/annurev-genom-091212-153455 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Hov, J. R. et al. Electrostatic modifications of the human leukocyte antigen-DR P9 peptide-binding pocket and susceptibility to primary sclerosing cholangitis. Hepatology. 53, 1967–1976. https://doi.org/10.1002/hep.24299 (2011).Article 
PubMed 

Google Scholar 
Sego, T. J. et al. A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness. PLoS Comput. Biol. 16, e1008451. https://doi.org/10.1371/journal.pcbi.1008451 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Crux, N. B. & Elahi, S. Human leukocyte antigen (HLA) and immune regulation: How do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis c virus infections?. Front. Immunol. 8, 832. https://doi.org/10.3389/fimmu.2017.00832 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Palmer, W. H. & Norman, P. J. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics. 75, 231–247. https://doi.org/10.1007/s00251-022-01288-z (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
James, L. M. & Georgopoulos, A. P. Persistent antigens hypothesis: The human leukocyte antigen (HLA) connection. J. Neurol. Neuromed. 3, 27–31. https://doi.org/10.29245/2572.942X/2018/6.1235 (2018).Article 

Google Scholar 
Grinde, B. Herpesviruses: Latency and reactivation–viral strategies and host response. J. Oral Microbiol. 5, 22766. https://doi.org/10.3402/jom.v5i0.22766 (2013).Article 

Google Scholar 
Watson, A. M. M. et al. Persistent infection with neurotropic herpes viruses and cognitive impairment. Psychol. Med. 43, 1023–1031. https://doi.org/10.1017/S003329171200195X (2013).Article 
PubMed 

Google Scholar 
Chakravorty, S., Afzali, B. & Kazemian, M. EBV-associated diseases: Current therapeutics and emerging technologies. Front. Immunol. 13, 1059133. https://doi.org/10.3389/fimmu.2022.1059133 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Itzhaki, R. F. Overwhelming evidence for a major role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer’s Disease (AD); Underwhelming evidence against. Vaccines 9, 679. https://doi.org/10.3390/vaccines9060679 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Komaroff, A. L., Pellett, P. E. & Jacobson, S. Human Herpesviruses 6A and 6B in brain diseases: Association versus causation. Clin. Microbiol. Rev. 34, e00143-e220. https://doi.org/10.1128/CMR.00143-20 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Warren-Gash, C. et al. Human herpesvirus infections and dementia or mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep. 9, 4743. https://doi.org/10.1038/s41598-019-41218-w (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Tzeng, N. S. et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—A nationwide, population-based cohort study in Taiwan. Neurotherapeutics. 15, 417–429. https://doi.org/10.1007/s13311-018-0611-x (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bradley, H., Markowitz, L. E., Gibson, T. & McQuillan, G. M. Seroprevalence of herpes simplex virus types 1 and 2—United States, 1999–2010. J. Infect. Dis. 209, 325–333. https://doi.org/10.1093/infdis/jit458 (2014).Article 
PubMed 

Google Scholar 
Looker, K. J. et al. Effect of HSV-2 infection on subsequent HIV acquisition: An updated systematic review and meta-analysis. Lancet Infect. Dis. 17, 1303–1316. https://doi.org/10.1016/S1473-3099(17)30405-X (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Berger, J. R. & Houff, S. Neurological complications of herpes simplex virus type 2 infection. Arch. Neurol. 65, 596–600. https://doi.org/10.1001/archneur.65.5.596 (2008).Article 
PubMed 

Google Scholar 
Santpere, G., Telford, M., Andres-Benito, P., Navarro, A. & Ferrer, I. The presence of human herpesvirus 6 in the brain in health and disease. Biomolecules 10, 1520. https://doi.org/10.3390/biom10111520 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Readhead, B. et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 99, 64–82. https://doi.org/10.1016/j.neuron.2018.05.023 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Eimer, W. A. et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 99, 56–63. https://doi.org/10.1016/j.neuron.2018.06.030 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Pantry, S. N. & Medveczky, P. G. Latency, integration, and reactivation of human herpesvirus-6. Viruses 9, 194. https://doi.org/10.3390/v9070194 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301. https://doi.org/10.1126/science.abj8222 (2022).Article 
ADS 
PubMed 

Google Scholar 
Chang, Y., Moore, P. S. & Weiss, R. A. Human oncogenic viruses: nature and discovery. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160264. https://doi.org/10.1098/rstb.2016.0264 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Söderberg-Nauclér, C., Geisler, J. & Vetcik, K. The emerging role of human cytomegalovirus infection in human carcinogenesis: A review of current evidence and potential therapeutic implications. Oncotarget 10, 4333–4337. https://doi.org/10.18632/oncotarget.27016 (2019).Article 

Google Scholar 
Lee, K. H., Kwon, D. E., Do Han, K., La, Y. & Han, S. H. Association between cytomegalovirus end-organ diseases and moderate-to-severe dementia: A population-based cohort study. BMC Neurol. 20, 1–9. https://doi.org/10.1186/s12883-020-01776-3 (2020).Article 

Google Scholar 
Mody, P. H., Marvin, K. N., Hynds, D. L. & Hanson, L. K. Cytomegalovirus infection induces Alzheimer’s disease-associated alterations in tau. J. Neurovirol. 29, 400–415. https://doi.org/10.1007/s13365-022-01109-9 (2023).Article 
PubMed 

Google Scholar 
Payne, R. P. et al. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells. J. Virol. 84, 10543–10557. https://doi.org/10.1128/JVI.00793-10 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Hjalgrim, H., Friborg, J. & Melbye, M. The epidemiology of EBV and its association with malignant disease. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Chapter 53 (eds Arvin, A. et al.) (Cambridge University Press, 2007).
Google Scholar 
Vollmers, S., Lobermeyer, A. & Körner, C. The new kid on the block: HLA-C, a key regulator of natural killer cells in viral immunity. Cells 10, 3108. https://doi.org/10.3390/cells10113108 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Gough, S. C. & Simmonds, M. J. The HLA region and autoimmune disease: Associations and mechanisms of action. Curr. Genomics 8, 453–465. https://doi.org/10.2174/138920207783591690 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Furukawa, H. et al. The role of common protective alleles HLA-DRB1*13 among systemic autoimmune diseases. Genes Immun. 18, 1–7. https://doi.org/10.1038/gene.2016.40 (2017).Article 
PubMed 

Google Scholar 
Smatti, M. K. et al. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 11, 762. https://doi.org/10.3390/v11080762 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Horst, D., Ressing, M. E. & Wiertz, E. J. Exploiting human herpesvirus immune evasion for therapeutic gain: Potential and pitfalls. Immunol. Cell Biol. 89, 359–366. https://doi.org/10.1038/icb.2010.129 (2011).Article 
PubMed 

Google Scholar 
Heldwein, E. E. & Krummenacher, C. Entry of herpesviruses into mammalian cells. Cell Mol. Life Sci. 65, 1653–1668. https://doi.org/10.1007/s00018-008-7570-z (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Frye, T. D., Chiou, H. C., Hull, B. E. & Bigley, N. J. The efficacy of a DNA vaccine encoding herpes simplex virus type 1 (HSV-1) glycoprotein D in decreasing ocular disease severity following corneal HSV-1 challenge. Arch. Virol. 147, 1747–1759. https://doi.org/10.1007/s00705-002-0830-6 (2002).Article 
PubMed 

Google Scholar 
Leroux-Roels, G. et al. Immunogenicity and safety of different formulations of an adjuvanted glycoprotein D genital herpes vaccine in healthy adults: a double-blind randomized trial. Hum. Vaccin. Immunother. 9, 1254–1262. https://doi.org/10.4161/hv.24043 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Heineman, T. C., Cunningham, A. & Levin, M. Understanding the immunology of Shingrix, a recombinant glycoprotein E adjuvanted herpes zoster vaccine. Curr. Opin. Immunol. 59, 42–48. https://doi.org/10.1016/j.coi.2019.02.009 (2019).Article 
PubMed 

Google Scholar 
Hong, J. et al. Glycoprotein B antibodies completely neutralize EBV infection of B Cells. Front. Immunol. 13, 920467. https://doi.org/10.3389/fimmu.2022.920467 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Kirchmeier, M. et al. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity. Clin. Vaccine Immunol. 21, 174–180. https://doi.org/10.1128/CVI.00662-13 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Jasirwan, C., Furusawa, Y., Tang, H., Maeki, T. & Mori, Y. Human herpesvirus-6A gQ1 and gQ2 are critical for human CD46 usage. Microbiol. Immunol. 58, 22–30. https://doi.org/10.1111/1348-0421.12110 (2014).Article 
PubMed 

Google Scholar 
Kawabata, A. et al. Analysis of a neutralizing antibody for human herpesvirus 6B reveals a role for glycoprotein Q1 in viral entry. J. Virol. 85, 12962–12971. https://doi.org/10.1128/JVI.05622-11 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Mukai, T., Hata, A., Isegawa, Y. & Yamanishi, K. Characterization of glycoprotein H and L of human herpesvirus 7. Microbiol. Immunol. 41, 43–50. https://doi.org/10.1111/j.1348-0421.1997.tb01171.x (1997).Article 
PubMed 

Google Scholar 
Pertel, P. E. Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J. Virol. 76, 4390–4400. https://doi.org/10.1128/jvi.76.9.4390-4400.2002 (2002).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, H. Y. et al. Common polymorphisms in the glycoproteins of human cytomegalovirus and associated strain-specific immunity. Viruses 13, 1106. https://doi.org/10.3390/v13061106 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
James, L. M. & Georgopoulos, A. P. Immunogenetic epidemiology of dementia and Parkinson’s Disease in 14 continental European countries: Shared human leukocyte antigen (HLA) profiles. J. Immunological Sci. 5, 16–26. https://doi.org/10.29245/2578-3009/2021/12.1209 (2021).Article 

Google Scholar 
Hurley, C. K. et al. Common, intermediate and well-documented HLA alleles in world populations: CIWD version 3.0.0. HLA. 95, 516–531. https://doi.org/10.1111/tan.13811 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, 0449–0454. https://doi.org/10.1093/nar/gkaa379 (2020).Article 

Google Scholar 
IEDB Analysis Resource. Accessed on April 11, 2024. http://tools.iedb.org/mhci/Charonis, S., James, L. M. & Georgopoulos, A. P. In silico assessment of binding affinities of three dementia-protective Human Leukocyte Antigen (HLA) alleles to nine human herpes virus antigens. Curr. Res. Transl. Med. 68, 211–216. https://doi.org/10.1016/j.retram.2020.06.002 (2020).Article 
PubMed 

Google Scholar 
Charonis, S., Tsilibary, E. P. & Georgopoulos, A. SARS-CoV-2 virus and Human Leukocyte Antigen (HLA) Class II: Investigation in silico of binding affinities for COVID-19 protection and vaccine development. J. Immunol. Sci. 4, 12–23. https://doi.org/10.29245/2578-3009/2020/4.1198 (2020).Article 

Google Scholar 
Charonis, S. A., Tsilibary, E. P. & Georgopoulos, A. P. In silico investigation of binding affinities between human leukocyte antigen class I molecules and SARS-CoV-2 virus spike and ORF1ab proteins. Explor. Immunol. 1, 16–26. https://doi.org/10.37349/ei.2021.00003 (2021).Article 

Google Scholar 
Babicki, S. et al. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153. https://doi.org/10.1093/nar/gkw419 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles