Development of cellulose acetate poly acrylonitrile (CAPA)–SiC/epoxy coating to mitigate corrosion of copper in chloride containing solutions

Li, B. et al. One-step electrochemical deposition leading to superhydrophobic matrix for inhibiting abiotic and microbiologically influenced corrosion of Cu in seawater environment. Colloids Surf. A 616, 126337. https://doi.org/10.1016/j.colsurfa.2021.126337 (2021).Article 
CAS 

Google Scholar 
El Mouaden, K. et al. Chitosan polymer as a green corrosion inhibitor for copper in sulfide-containing synthetic seawater. Int. J. Biol. Macromol. 119, 1311–1323. https://doi.org/10.1016/j.ijbiomac.2018.07.182 (2018).Article 
CAS 
PubMed 

Google Scholar 
Echihi, S. et al. Corrosion inhibition of copper by pyrazole pyrimidine derivative in synthetic seawater: Experimental and theoretical studies. Mater. Today Proc. 37, 3958–3966. https://doi.org/10.1016/j.matpr.2020.09.264 (2021).Article 
CAS 

Google Scholar 
Feng, L., Zheng, S., Zhu, H., Ma, X. & Hu, Z. Detection of corrosion inhibition by dithiane self-assembled monolayers (SAMs) on copper. J. Taiwan Inst. Chem. Eng. 142, 104610. https://doi.org/10.1016/j.jtice.2022.104610 (2023).Article 
CAS 

Google Scholar 
Chiter, F., Costa, D., Maurice, V. & Marcus, P. DFT investigation of 2-mercaptobenzothiazole adsorption on model oxidized copper surfaces and relationship with corrosion inhibition. Appl. Surf. Sci. 537, 147802. https://doi.org/10.1016/j.apsusc.2020.147802 (2021).Article 
CAS 

Google Scholar 
Pareek, S. et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt.% NaCl solution by eco-friendly imidazopyrimidine dye: Experimental and theoretical approach. Chem. Eng. J. 358, 725–742 (2019).Article 
CAS 

Google Scholar 
Dobkowska, A. et al. A comparison of the corrosion behaviour of copper materials in dilute nitric acid. Corros. Sci. 192, 109778. https://doi.org/10.1016/j.corsci.2021.109778 (2021).Article 
CAS 

Google Scholar 
Jia, R., Unsal, T., Xu, D., Lekbach, Y. & Gu, T. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. Int. Biodeterior. Biodegrad. 137, 42–58. https://doi.org/10.1016/j.ibiod.2018.11.007 (2019).Article 
CAS 

Google Scholar 
Hu, C., Li, Y., Zhang, N. & Ding, Y. Synthesis and characterization of a poly (o-anisidine)–SiC composite and its application for corrosion protection of steel. RSC Adv. 7(19), 11732–11742. https://doi.org/10.1039/C6RA27343B (2017).Article 
ADS 
CAS 

Google Scholar 
He, X. et al. Elaborate construction of potent antioxidant properties in PBP-Ce(Ш) nanosheets via a one-pot approach for seamless integration of anti-corrosion, wear-resistance, and flame-retardancy. J. Mater. Sci. Technol. 201, 197–209. https://doi.org/10.1016/j.jmst.2024.03.012 (2024).Article 

Google Scholar 
Xue, N. et al. Comparison of cold-sprayed coatings of copper-based composite deposited on AZ31B magnesium alloy and 6061 T6 aluminum alloy substrates. Materials 16(14), 5120. https://doi.org/10.3390/ma16145120 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, C. et al. Flexural performance and damage evolution of multiple fiberglass-reinforced UV-CIPP composite materials—A view from mechanics and energy release. J. Mater. Res. Technol. 29, 3317–3339. https://doi.org/10.1016/j.jmrt.2024.02.051 (2024).Article 
CAS 

Google Scholar 
Yang, X. et al. Synthesis, characterization, and thermal pyrolysis mechanism of high temperature resistant phenolphthalein-based poly (arylene ether nitrile). Polym. Degrad. Stab. 224, 110754. https://doi.org/10.1016/j.polymdegradstab.2024.110754 (2024).Article 
CAS 

Google Scholar 
Othman, N. H. et al. Graphene-based polymer nanocomposites as barrier coatings for corrosion protection. Prog. Org. .ings 135, 82–99. https://doi.org/10.1016/j.porgcoat.2019.05.030 (2019).Article 
CAS 

Google Scholar 
Liu, T. et al. Flexural performance of curved-pultruded GFRP arch beams subjected to varying boundary conditions. Eng. Struct. 308, 117962. https://doi.org/10.1016/j.engstruct.2024.117962 (2024).Article 

Google Scholar 
Jiang, Y., Liu, L., Yan, J. & Wu, Z. Room-to-low temperature thermo-mechanical behavior and corresponding constitutive model of liquid oxygen compatible epoxy composites. Compos. Sci. Technol. 245, 110357. https://doi.org/10.1016/j.compscitech.2023.110357 (2024).Article 
CAS 

Google Scholar 
Meng, X., Chen, W., Mei, H. & Wang, L. Corrosion mechanism of UHV transmission line tower foot in Southern China. IEEE Trans. Power Deliv. 39(1), 210–219. https://doi.org/10.1109/TPWRD.2023.3329140 (2024).Article 

Google Scholar 
Gao, S., Li, H., Huang, H. & Kang, R. Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing. Appl. Surf. Sci. 599, 153982. https://doi.org/10.1016/j.apsusc.2022.153982 (2022).Article 
CAS 

Google Scholar 
Yang, W., Liu, Z. & Huang, H. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water. Corros. Sci. 188, 109562. https://doi.org/10.1016/j.corsci.2021.109562 (2021).Article 
CAS 

Google Scholar 
Ye, Y. et al. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros. Sci. 147, 9–21. https://doi.org/10.1016/j.corsci.2018.10.034 (2019).Article 
CAS 

Google Scholar 
Zhang, Y., Zhang, S., Tan, B., Guo, L. & Li, H. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution. J. Colloid Interface Sci. 604, 1–14. https://doi.org/10.1016/j.jcis.2021.07.034 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, C., Li, W., Tan, B., Zuo, X. & Zhang, S. Adsorption of Gardenia jasminoides fruits extract on the interface of Cu/H2SO4 to inhibit Cu corrosion: Experimental and theoretical studies. J. Mol. Liq. 345, 116996. https://doi.org/10.1016/j.molliq.2021.116996 (2022).Article 
CAS 

Google Scholar 
Erfanian, A., Moayed, M. H., Mirjalili, M. & Pahlavan, S. Insight into the elemental sulfur corrosion of carbon steel in chloride bearing media using electrochemical and nonelectrochemical techniques. J. Taiwan Inst. Chem. Eng. 131, 104117. https://doi.org/10.1016/j.jtice.2021.104177 (2022).Article 
CAS 

Google Scholar 
Ziat, Y., Hammi, M., Zarhri, Z. & Laghlimi, C. Epoxy coating modified with graphene: A promising composite against corrosion behavior of copper surface in marine media. J. Alloys Compd. 820, 153308. https://doi.org/10.1016/j.jallcom.2019.153380 (2020).Article 
CAS 

Google Scholar 
Singh, A., Liu, M., Ituen, E. & Lin, Y. Anti-corrosive properties of an effective guar gum grafted 2-acrylamido-2-methylpropanesulfonic acid (GG-AMPS) coating on copper in a 3.5 wt.% NaCl solution. Coatings 10, 241. https://doi.org/10.3390/coatings10030241 (2020).Article 
CAS 

Google Scholar 
Shinato, K. W., Zewde, A. A. & Jin, Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors. Corros. Rev. 38(2), 101–109. https://doi.org/10.1515/corrrev-2019-0105 (2020).Article 
CAS 

Google Scholar 
Liu, Y., Fan, B., Xu, B. & Yang, B. Ambient-stable polyethyleneimine functionalized Ti3C2Tx nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Mater. Lett. 337, 133979. https://doi.org/10.1016/j.matlet.2023.133979 (2023).Article 
CAS 

Google Scholar 
Li, H. et al. Investigation of Losartan Potassium as an eco-friendly corrosion inhibitor for copper in 0.5 M H2SO4. J. Mol. Liq. 305, 112789. https://doi.org/10.1016/j.molliq.2020.112789 (2020).Article 
CAS 

Google Scholar 
Song, L. et al. Corrosion protection performance of a coating with 2-aminino-5-mercato-1, 3, 4-thiadizole-loaded hollow mesoporous silica on copper. Prog. Org. Coat. 175, 107331. https://doi.org/10.1016/j.porgcoat.2022.107331 (2023).Article 
CAS 

Google Scholar 
Wasim, M. & Djukic, M. B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions. J. Nat. Gas Sci. Eng. https://doi.org/10.1016/j.jngse.2022.104467 (2022).Article 

Google Scholar 
Sharma, S., Rani, P., Mehtab, S., Zaidi, M. & Haider, G. Polyacrylonitrile/polysulfone blends for corrosion protection of copper. Adv. Sci. Eng. Med. 11(11), 1090–1092. https://doi.org/10.1166/asem.2019.2457 (2019).Article 
CAS 

Google Scholar 
Alao, A. O., Popoola, A. P. & Sanni, O. The influence of nanoparticle inhibitors on the corrosion protection of some industrial metals: A review. J. Bio- Tribo-Corros. 8(3), 1–16. https://doi.org/10.1007/s40735-022-00665-1 (2022).Article 

Google Scholar 
Andarany, K. S., Sagir, A., Ahmad, A., Deni, S. K. & Gunawan, W. Cellulose acetate layer effect toward aluminium corrosion rate in hydrochloric acid media. In IOP Conference Series: Materials Science and Engineering, Vol. 237, No. 1, 012042. (IOP Publishing, 2017).‏ https://doi.org/10.1088/1757-899X/237/1/012042Shi, S. C. & Su, C. C. Electrochemical behavior of hydroxypropyl methylcellulose acetate succinate as novel biopolymeric anticorrosion coating. Mater. Chem. Phys. 248, 122929. https://doi.org/10.1016/j.matchemphys.2020.122929 (2020).Article 
CAS 

Google Scholar 
Pawar, N. R., Chimankar, O. P., Bhandakkar, V. D. & Padole, N. N. Ultrasonic velocity and absorption study of binary mixtures of cyclohexane with acrylonitrile by interferometric method at different frequencies. In IOP Conference Series: Materials Science and Engineering, Vol. 42, No. 1, 012030 (IOP Publishing, 2012).‏ https://doi.org/10.1088/1757-899X/42/1/012030Tigori, M. A., Koné, A., Mireille, K. A., Sissouma, D. & Niamien, P. M. Experimental and theoretical assessments on anticorrosion performance of 2-(1H-benzimidazol-2-yl)-3-(4-hydroxyphenyl) acrylonitrile for copper in 1M HNO3. Earthline J. Chem. Sci. 9(1), 17–45. https://doi.org/10.34198/ejcs.9123.1745 (2023).Article 
CAS 

Google Scholar 
Rakhymbay, G. et al. Synthesis and evaluation of corrosion inhibitory and adsorptive properties of N-(β-ethoxypropionitrile-N, N-bis (2-hydroxyethylethoxy) fatty amide. R. Soc. Open Sci. 8(9), 211066. https://doi.org/10.1098/rsos.211066 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yun, J., Zolfaghari, A. & Sane, S. Study of hydrogen sulfide effect on acrylonitrile butadiene rubber/hydrogenated acrylonitrile butadiene rubber for sealing application in oil and gas industry. J. Appl. Polym. Sci. 139(30), e52695. https://doi.org/10.1002/app.52695 (2022).Article 
CAS 

Google Scholar 
Mahmmod, A. A., Kazarinov, I. A., Khadom, A. A. & Mahood, H. B. Experimental and theoretical studies of mild steel corrosion inhibition in phosphoric acid using tetrazoles derivatives. J. Bio- Tribo-Corros. 4(4), 1–11 (2018).Article 

Google Scholar 
Younes, A. K., Ghayad, I., Ömer, E. B. & Kandemirli, F. Corrosion inhibition of copper in sea water using derivatives of tetrazoles and thiosemicarbazide. Innov. Corros. Mater. Sci. (Former. Recent Patents Corros. Sci.) 8(1), 60–66. https://doi.org/10.2174/2352094908666180830123952 (2018).Article 

Google Scholar 
Zeng, Y., He, Z., Hua, Q., Xu, Q. & Min, Y. Polyacrylonitrile infused in a modified honeycomb aluminum alloy bipolar plate and its acid corrosion resistance. ACS Omega 5(27), 16976–16985. https://doi.org/10.1021/acsomega.0c02742 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, X. et al. Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Appl. Mater. Interfaces 12(35), 39227–39235. https://doi.org/10.1021/acsami.0c10290 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jaymand, M. Recent progress in chemical modification of polyaniline. Prog. Polym. Sci. 38(9), 1287–1306. https://doi.org/10.1016/j.progpolymsci.2013.05.015 (2013).Article 
CAS 

Google Scholar 
Rouquerol, F., Rouquerol, J. & Sing, K. S. W. Adsorption by Powders and Porous Solids (Academic Press INC., 1999).
Google Scholar 
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).Article 
ADS 
CAS 

Google Scholar 
Gregg, S. J. & Sing, K. S. W. Adsorption Surface Area and Porosity 2nd edn. (Academic Press INC., 1982).
Google Scholar 
Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).Article 
CAS 

Google Scholar 
El Nemr, A., Ragab, S., El Sikaily, A. & Khaled, A. Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions. Carbohydr. Polym. 130(2015), 41–48. https://doi.org/10.1016/j.carbpol.2015.04.065 (2015).Article 
CAS 
PubMed 

Google Scholar 
El Nemr, A., Ragab, S. & El Sikaily, A. Testing Zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation. Carbohydr. Polym. 151(2016), 1058–1067. https://doi.org/10.1016/j.carbpol.2016.06.072 (2016).Article 
CAS 
PubMed 

Google Scholar 
El Nemr, A., Ragab, S. & El Sikaily, A. Rapid synthesis of cellulose triacetate from cotton cellulose and its effect on specific surface area and particle size distribution. Iran Polym. J. 26(4), 261–272. https://doi.org/10.1007/s13726-017-0516-2 (2017).Article 
CAS 

Google Scholar 
El Nemr, A. & Ragab, S. Acetylation of Cotton-Giza 86 cellulose using MnCl2 as a new catalyst and its application to machine oil removal. Environ. Process. 5(4), 895–905. https://doi.org/10.1007/s40710-018-0330-7 (2018).Article 

Google Scholar 
Ragab, S. & El Nemr, A. Nanofiber cellulose di- and tri-acetate using ferric chloride as a catalyst promoting highly efficient synthesis under microwave irradiation. J. Macromol. Sci. Part A Pure Appl. Chem. 55(2), 124–134. https://doi.org/10.1080/10601325.2017.1387741 (2018).Article 
CAS 

Google Scholar 
Ragab, S., Eleryan, A. & El Nemr, A. Highly efficient esterification of cellulose using ferric perchlorate hexahydrate at room temperature. Sci. Rep. 12, 5643. https://doi.org/10.1038/s41598-022-09669-w (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ragab, S., El Sikaily, A. & El Nemr, A. Fabrication of dialysis membrane from cotton Giza 86 cellulose di-acetate prepared using Ac2O and NiCl2 as new catalyst. Scientific Reports. 13, 2276 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hassaan, M. A. & El Nemr, A. Classification and identification of different minerals in the Mediterranean sediments by PSA, FTIR and XRD techniques. Mar. Pollut. Bull. 173(4), 113070. https://doi.org/10.1016/j.marpolbul.2021.113070 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hassaan, M. A. et al. Synthesis, characterization and Synergistic effects of modified biochar in combination with α-Fe2O3 NPs on biogas production from red algae Pterocladia capillacea. Sustainability 2021(13), 9275. https://doi.org/10.3390/su13169275 (2021).Article 
CAS 

Google Scholar 
El Nemr, A., Hassaan, M. A., Elkatory, M. R., Ragab, S. & Pantaleo, A. Efficiency of magnetite (Fe3O4) nanoparticles with different pretreatments for enhancing biogas yield of macroalgae Ulva intestinalis Linnaeus. Molecules 2021(26), 5105. https://doi.org/10.3390/molecules26165105 (2021).Article 
CAS 

Google Scholar 
El Nemr, A., Moneer, A. A., Khaled, A., El Sikaily, A. & Elsayed, G. F. Modeling of synergistic halide additives effect on the corrosion of aluminum in basic solution containing dye. Mater. Chem. Phys. 144(2014), 139–154 (2014).Article 

Google Scholar 
El Nemr, A. et al. Differences in corrosion inhibition of water extract of Cassia fistula L. pods and o-phenanthroline on steel in acidic solutions in the presence and absence of chloride ions. Desalin. Water Treat. 52(28–30), 5187–5198. https://doi.org/10.1080/19443994.2013.807473 (2014).Article 
CAS 

Google Scholar 
Elhebshi, A. H., El Nemr, A., El-Deab, M. S. & Ashour, I. CBG-HCl as a green corrosion inhibitor for low carbon steel in 0.5M H2SO4 with and without 0.1M NaCl. Desalin. Water Treat. 164(2019), 240–248. https://doi.org/10.5004/dwt.2019.24446 (2019).Article 
CAS 

Google Scholar 
Elhebshi, A., El Nemr, A., El-Deab, M. S., Ashour, I. & Ragab, S. Inhibition of copper alloy corrosion using CBG-HCl as a green inhibitor in 0.5 M H2SO4 solution. Desalin. Water Treat. 242(2021), 106–116 (2021).Article 
CAS 

Google Scholar 
Barghout, N. A., Kashyout, A. E. H. B., Ibrahim, M. A. M. & El Nemr, A. Novel synthesis of SiC–SiO2 nanotubes from Cinachyrella sp. and its Improvement of the corrosion resistance of low steel in 3.5 wt.% NaCl water solution. J. Mater. Eng. Perform. 32, 10857–10876. https://doi.org/10.1007/s11665-023-08663-1 (2023).Article 
CAS 

Google Scholar 
Barghout, N. A. et al. Use of orange peel extract as inhibitor of stainless steel corrosion during acid washing in multistage flash desalination plant. J. Appl. Electrochem. 53, 379–399. https://doi.org/10.1007/s10800-022-01772-0 (2023).Article 
CAS 

Google Scholar 
Abdullah, R. S. et al. [4-(3-Amino-4-mehoxy-5-methylphenyl)-1-oxo-1H-phthalaz-2-yl] acetic acid hydrazide and its synergetic effect with KI as a novel inhibitor for low carbon steel corrosion in 0.5M H2SO4. Sci. Rep. 12, 15484. https://doi.org/10.1038/s41598-022-19057-z (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lao, X. & Xu, X. Effect of silica on in-situ synthesis of nano-SiC whiskers in porous Al2O3-SiC composite ceramics for solar thermal storage by aluminium-asswastedcarbothermal reduction. Ceram 44, 20501–20507. https://doi.org/10.1016/j.ceramint.2018.08.046 (2018).Article 
CAS 

Google Scholar 
Abd El Meguid, E. A., Abd El Rehim, S. S. & Al Kiey, S. A. Inhibitory effect of cetyltrimethyl ammonium bromide on the corrosion of 904L stainless steel in LiBr solution. Corros. Eng. Sci. 51, 429–437. https://doi.org/10.1080/1478422X.2015.1131799 (2016).Article 
CAS 

Google Scholar 
Barghout, N., Kashyout, A. E. H. B., Ibrahim, M. A. & El Nemr, A. Novel synthesis of SiC–SiO2 nanotubes from Cinachyrella sp. and its improvement of the corrosion resistance of low carbon steel in 3.5% NaCl water solution. J. Mater. Eng. Perform. 32(23), 10857–10876. https://doi.org/10.1007/s11665-023-08663-1 (2023).Article 
CAS 

Google Scholar 
Murphy, D. & de Pinho, M. N. An ATR-FTIR study of water in cellulose acetate membranes prepared by phase inversion. J. Membr. Sci. 106(3), 245–257. https://doi.org/10.1016/0376-7388(95)00089-U (1995).Article 
CAS 

Google Scholar 
Tabbal, M. et al. XPS and FTIR analysis of nitrogen incorporation in CNx thin films. Surf. Coat. Technol. 98(1–3), 1092–1096. https://doi.org/10.1016/S0257-8972(97)00229-6 (1998).Article 
CAS 

Google Scholar 
Sing, K. S. W. et al. Reporting physisorption data for gas/solid interface with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619. https://doi.org/10.1351/pac198254112201 (1985).Article 
CAS 

Google Scholar 
Dagdag, O. et al. Phosphorous-based epoxy resin composition as an effective anticorrosive coating for steel. Int. J. Ind. Chem. 9, 231–240. https://doi.org/10.1007/s40090-018-0152-5 (2018).Article 
CAS 

Google Scholar 
Albetran, H. M. Structural Characterization of Graphite Nanoplatelets Synthesized from Graphite Flakes. Preprints, 2020080325 (2020). https://doi.org/10.20944/preprints202008.0325.v1Ibrahim, S. O. Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst. Adv. Nat. Sci. Nanosci. Nanotechnol. 9(2), 025008. https://doi.org/10.1088/2043-6254/aac29d (2018).Article 
ADS 
CAS 

Google Scholar 
Pham, G. V. et al. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 035016. https://doi.org/10.1088/2043-6262/5/3/035016 (2014).Article 
ADS 
CAS 

Google Scholar 
Chen, X. H. et al. Corrosion behavior of carbon nanotubes–Ni composite coating. Surf. Coat. Technol. 191, 351–356. https://doi.org/10.1016/j.surfcoat.2004.04.055 (2005).Article 
CAS 

Google Scholar 
Ammar, S., Ramesh, K., Vengadaesvaran, B., Ramesh, S. & Arof, A. K. A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties. Electrochim. Acta. 220, 417–426. https://doi.org/10.1016/j.electacta.2016.10.099 (2016).Article 
CAS 

Google Scholar 
Jiang, Y. et al. Customized three-dimensional porous catalyst for Knoevenagel reaction. J. Porous Mater. 27, 779–788. https://doi.org/10.1007/s10934-020-00859-3 (2020).Article 
CAS 

Google Scholar 
Narzary, S., Alamelu, K., Raja, V. & Ali, B. J. Visible light active, magnetically retrievable Fe3O4@ SiO2@ g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants. J. Environ. Chem. Eng. 8, 104373. https://doi.org/10.1016/j.jece.2020.104373 (2020).Article 
CAS 

Google Scholar 
Shang, Y. et al. The analysis and fabrication of a novel tin-nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7 Si-0.7 Mg alloy in acidic and alkali corrosive environments. Int. J. Precis. Eng. Manuf. 18(1), 93–98. https://doi.org/10.1007/s12541-017-0011-x (2017).Article 

Google Scholar 
Lgaz, H. et al. Corrosion inhibition properties of thiazolidinedione derivatives for copper in 3.5 wt.% NaCl NaCl medium. Metals 11(11), 1861. https://doi.org/10.3390/met11111861 (2021).Article 
CAS 

Google Scholar 
Bin, G. U. O., Zhang, P., Yongping, J. I. N. & Cheng, S. Effects of alternating magnetic field on the corrosion rate and corrosion products of copper. Rare Met. 27(3), 324–328. https://doi.org/10.1016/S1001-0521(08)60138-2 (2008).Article 

Google Scholar 
Shukla, P., Bajpai, A. K. & Bajpai, R. Structural, morphological, thermal and mechanical characterization of cellulose acetate–poly (acrylonitrile) semi interpenetrating polymer network (IPN) membranes and study of their swelling behavior. Polym. Bull. 73, 2245–2264. https://doi.org/10.1007/s00289-016-1606-6 (2016).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles