Chromosome-level genome assembly of Tritrichomonas foetus, the causative agent of Bovine Trichomonosis

Michi, A. N., Favetto, P. H., Kastelic, J. & Cobo, E. R. A review of sexually transmitted bovine trichomoniasis and campylobacteriosis affecting cattle reproductive health. Theriogenology 85, 781–791, https://doi.org/10.1016/j.theriogenology.2015.10.037 (2016).Article 
PubMed 

Google Scholar 
Cobo, E. R., Corbeil, L. B. & BonDurant, R. H. Immunity to infections in the lower genital tract of bulls. Journal of Reproductive Immunology 89, 55–61, https://doi.org/10.1016/j.jri.2011.02.002 (2011).Article 
CAS 
PubMed 

Google Scholar 
Skirrow, S. Z. & Bondurant, R. H. Treatment of bovine trichomoniasis with ipronidazole. Aust Vet J 65, 156, https://doi.org/10.1111/j.1751-0813.1988.tb14446.x (1988).Article 
CAS 
PubMed 

Google Scholar 
BonDurant, R. H. Pathogenesis, Diagnosis, and Management of Trichomoniasis in Cattle. Veterinary Clinics of North America: Food Animal Practice 13, 345–361, https://doi.org/10.1016/S0749-0720(15)30346-7 (1997).Article 
CAS 
PubMed 

Google Scholar 
Martin, K. A., Henderson, J. & Brewer, M. T. Bovine Trichomonosis Cases in the United States 2015-2019. Front Vet Sci 8, 692199, https://doi.org/10.3389/fvets.2021.692199 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Gifford, C. A. et al. Factors important for bull purchasing decisions and management in extensive rangeland production systems of New Mexico: a producer survey. Translational Animal Science 7, https://doi.org/10.1093/tas/txac167 (2022).Slapeta, J. et al. Comparative analysis of Tritrichomonas foetus (Riedmüller, 1928) cat genotype, T. foetus (Riedmüller, 1928) cattle genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA loci. Int J Parasitol 42, 1143–1149, https://doi.org/10.1016/j.ijpara.2012.10.004 (2012).Article 
CAS 
PubMed 

Google Scholar 
Yao, C. Diagnosis of Tritrichomonas foetus-infected bulls, an ultimate approach to eradicate bovine trichomoniasis in US cattle? Journal of medical microbiology 62, 1–9, https://doi.org/10.1099/jmm.0.047365-0 (2013).Article 
CAS 
PubMed 

Google Scholar 
Benchimol, M. et al. Draft Genome Sequence of Tritrichomonas foetus Strain K. Genome announcements 5, https://doi.org/10.1128/genomeA.00195-17 (2017).Senior, E. M. A reverse vaccinology approach to identifying vaccine candidate antigens for bovine Trichomoniasis. (The University of Liverpool (United Kingdom), 2020).Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D. & Embley, T. M. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc Biol Sci 263, 1053–1059, https://doi.org/10.1098/rspb.1996.0155 (1996).Article 
CAS 
PubMed 

Google Scholar 
Wick, R. Porechop: Adapter trimmer for Oxford Nanopore reads. Github https://github.com/rrwick (2017).Wick, R. Filtlong: Quality filtering tool for long reads. GitHub https://github.com/rrwick (2017).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890, https://doi.org/10.1093/bioinformatics/bty560 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nature biotechnology 37, 540–546, https://doi.org/10.1038/s41587-019-0072-8 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nature Methods 17, 155–158, https://doi.org/10.1038/s41592-019-0669-3 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nature Computational Science 1, 332–336, https://doi.org/10.1038/s43588-021-00073-4 (2021).Article 
PubMed 

Google Scholar 
Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature biotechnology 38, 1044–1053, https://doi.org/10.1038/s41587-020-0503-6 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Solares, E. A. et al. Rapid Low-Cost Assembly of the Drosophila melanogaster Reference Genome Using Low-Coverage, Long-Read Sequencing. G3 Genes|Genomes|Genetics 8, 3143–3154, https://doi.org/10.1534/g3.118.200162 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome research 27, 737–746, https://doi.org/10.1101/gr.214270.116 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100, https://doi.org/10.1093/bioinformatics/bty191 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wick, R. R. & Holt, K. E. Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLOS Computational Biology 18, e1009802, https://doi.org/10.1371/journal.pcbi.1009802 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28, 2678–2679, https://doi.org/10.1093/bioinformatics/bts503 (2012).Article 
CAS 
PubMed 

Google Scholar 
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Broad Institute of MIT and Harvard. Picard: A set of command line tools (in Java) for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. https://broadinstitute.github.io/picard (2014).Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, https://doi.org/10.1093/bioinformatics/btac808 (2022).Zeng, X. et al. Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. bioRxiv, 2023.2011. 2018.567668 (2023).Xu, W.-D., Lun, Z.-R. & Gajadhar, A. Chromosome numbers of Tritrichomonas foetus and Tritrichomonas suis. Vet Parasitol 78, 247–251, https://doi.org/10.1016/S0304-4017(98)00150-2 (1998).Article 
CAS 
PubMed 

Google Scholar 
Zubáčová, Z., Cimbůrek, Z. & Tachezy, J. Comparative analysis of trichomonad genome sizes and karyotypes. Molecular and Biochemical Parasitology 161, 49–54, https://doi.org/10.1016/j.molbiopara.2008.06.004 (2008).Article 
CAS 
PubMed 

Google Scholar 
Benchimol, M. et al. Tritrichomonas foetus strain K, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:MLAK00000000.1 (2016).Senior, E. Tritrichomonas foetusisolate Belfast, whole genome shotgun sequencing project, GenBank, https://identifiers.org/ncbi/insdc:CAJHQR000000000.1 (2021).Carlton, J. M. et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science (New York, N.Y.) 315, 207–212, https://doi.org/10.1126/science.1132894 (2007).Article 
ADS 
PubMed 

Google Scholar 
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution 38, 4647–4654, https://doi.org/10.1093/molbev/msab199 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770, https://doi.org/10.1093/bioinformatics/btr011 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204, https://doi.org/10.1093/bioinformatics/btx153 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research 27, 573–580, https://doi.org/10.1093/nar/27.2.573 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).Article 
ADS 
CAS 

Google Scholar 
Smith, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. RepeatMasker Open-4.0 (2013).Du, L., Zhang, C., Liu, Q., Zhang, X. & Yue, B. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34, 681–683, https://doi.org/10.1093/bioinformatics/btx665 (2017).Article 
CAS 

Google Scholar 
Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337, https://doi.org/10.1093/bioinformatics/btp157 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic acids research 49, D192–D200, https://doi.org/10.1093/nar/gkaa1047 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769, https://doi.org/10.1093/bioinformatics/btv661 (2016).Article 
CAS 
PubMed 

Google Scholar 
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform 3, lqaa108, https://doi.org/10.1093/nargab/lqaa108 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoff, K. J., Lomsadze, A., Borodovsky, M. & Stanke, M. Whole-Genome Annotation with BRAKER. Methods Mol Biol 1962, 65–95, https://doi.org/10.1007/978-1-4939-9173-0_5 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom Bioinform 2, lqaa026, https://doi.org/10.1093/nargab/lqaa026 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gabriel, L., Hoff, K. J., Brůna, T., Borodovsky, M. & Stanke, M. TSEBRA: transcript selector for BRAKER. BMC Bioinformatics 22, 566, https://doi.org/10.1186/s12859-021-04482-0 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7, 62, https://doi.org/10.1186/1471-2105-7-62 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644, https://doi.org/10.1093/bioinformatics/btn013 (2008).Article 
CAS 
PubMed 

Google Scholar 
Iwata, H. & Gotoh, O. Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic acids research 40, e161, https://doi.org/10.1093/nar/gks708 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gotoh, O. A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence. Nucleic acids research 36, 2630–2638, https://doi.org/10.1093/nar/gkn105 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59–60, https://doi.org/10.1038/nmeth.3176 (2015).Article 
CAS 
PubMed 

Google Scholar 
Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic acids research 33, 6494–6506, https://doi.org/10.1093/nar/gki937 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic acids research 51, D445–d451, https://doi.org/10.1093/nar/gkac998 (2023).Article 
CAS 
PubMed 

Google Scholar 
Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic acids research 28, 45–48, https://doi.org/10.1093/nar/28.1.45 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature genetics 25, 25–29, https://doi.org/10.1038/75556 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research 47, D309–d314, https://doi.org/10.1093/nar/gky1085 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27–30, https://doi.org/10.1093/nar/28.1.27 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic acids research 36, 3420–3435, https://doi.org/10.1093/nar/gkn176 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240, https://doi.org/10.1093/bioinformatics/btu031 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic acids research 51, D418–D427, https://doi.org/10.1093/nar/gkac993 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic acids research 48, D498–d503, https://doi.org/10.1093/nar/gkz1031 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mölder, F. et al. Sustainable data analysis with Snakemake [version 2; peer review: 2 approved]. F1000Research 10, https://doi.org/10.12688/f1000research.29032.2 (2021).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP514276 (2024).Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075, https://doi.org/10.1093/bioinformatics/btt086 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, N. & Li, H. compleasm: a faster and more accurate reimplementation of BUSCO. Bioinformatics 39, https://doi.org/10.1093/bioinformatics/btad595 (2023).Nevers, Y. et al. Quality assessment of gene repertoire annotations with OMArk. Nature biotechnology https://doi.org/10.1038/s41587-024-02147-w (2024).Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477, https://doi.org/10.1089/cmb.2012.0021 (2012).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359, https://doi.org/10.7717/peerj.7359 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles