Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling

Corbet, J.-P. & Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651–2710 (2006).Article 
CAS 
PubMed 

Google Scholar 
Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).Article 
PubMed 

Google Scholar 
Buskes, M. J. & Blanco, M.-J. Impact of cross-coupling reactions in drug discovery and development. Molecules 25, 3493 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moragas, T., Correa, A. & Martin, R. Metal-catalyzed reductive coupling reactions of organic halides with carbonyl-type compounds. Chem. Eur. J. 20, 8242–8258 (2014).Article 
CAS 
PubMed 

Google Scholar 
Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X., Dai, Y. & Gong, H. in Ni- and Fe-Based Cross-Coupling Reactions (ed. Correa, A.) 61–89 (Springer, 2017).Richmond, E. & Moran, J. Recent advances in nickel catalysis enabled by stoichiometric metallic reducing agents. Synthesis 50, 499–513 (2018).Article 
CAS 

Google Scholar 
Goldfogel, M. J., Huang, L. & Weix, D. J. in Nickel Catalysis in Organic Synthesis (ed. Ogoshi, S.) 183–222 (Wiley, 2020).Chaussard, J. et al. Use of sacrificial anodes in electrochemical functionalization of organic halides. Synthesis 1990, 369–381 (1990).Article 

Google Scholar 
Durandetti, M., Nédélec, J.-Y. & Périchon, J. Nickel-catalyzed direct electrochemical cross-coupling between aryl halides and activated alkyl halides. J. Org. Chem. 61, 1748–1755 (1996).Article 
CAS 
PubMed 

Google Scholar 
Durandetti, M., Périchon, J. & Nédélec, J.-Y. Asymmetric induction in the electrochemical cross-coupling of aryl halides with α-chloropropionic acid derivatives catalyzed by nickel complexes. J. Org. Chem. 62, 7914–7915 (1997).Article 
CAS 
PubMed 

Google Scholar 
Durandetti, M., Gosmini, C. & Périchon, J. Ni-catalyzed activation of α-chloroesters: a simple method for the synthesis of α-arylesters and β-hydroxyesters. Tetrahedron 63, 1146–1153 (2007).Article 
CAS 

Google Scholar 
Everson, D. A., Jones, B. A. & Weix, D. J. Replacing conventional carbon nucleophiles with electrophiles: nickel-catalyzed reductive alkylation of aryl bromides and chlorides. J. Am. Chem. Soc. 134, 6146–6159 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosen, B. M. et al. Nickel-catalyzed cross-couplings involving carbon–oxygen bonds. Chem. Rev. 111, 1346–1416 (2011).Article 
CAS 
PubMed 

Google Scholar 
He, F.-S., Ye, S. & Wu, J. Recent advances in pyridinium salts as radical reservoirs in organic synthesis. ACS Catal. 9, 8943–8960 (2019).Article 
CAS 

Google Scholar 
Karmakar, S., Silamkoti, A., Meanwell, N. A., Mathur, A. & Gupta, A. K. Utilization of C(sp3)-carboxylic acids and their redox-active esters in decarboxylative carbon–carbon bond formation. Adv. Syn. Catal. 363, 3693–3736 (2021).Article 
CAS 

Google Scholar 
Perkins, R. J., Hughes, A. J., Weix, D. J. & Hansen, E. C. Metal-reductant-free electrochemical nickel-catalyzed couplings of aryl and alkyl bromides in acetonitrile. Org. Process Res. Dev. 23, 1746–1751 (2019).Article 
CAS 

Google Scholar 
Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling. Science 376, 410–416 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Franke, M. C. et al. Zinc-free, scalable reductive cross-electrophile coupling driven by electrochemistry in an undivided cell. ACS Catal. 12, 12617–12626 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Su, Z.-M. et al. Ni- and Ni/Pd-catalyzed reductive coupling of lignin-derived aromatics to access biobased plasticizers. ACS Cent. Sci. 9, 159–165 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Twilton, J. et al. Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis. Nature 623, 71–76 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, G., Xie, Y., Wang, Z., Liu, Y. & Huang, H. Diboron as a reductant for nickel-catalyzed reductive coupling: rational design and mechanistic studies. Chem. Commun. 51, 1850–1853 (2015).Article 
CAS 

Google Scholar 
Anka-Lufford, L. L., Huihui, K. M. M., Gower, N. J., Ackerman, L. K. G. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling with organic reductants in non-amide solvents. Chem. Eur. J. 22, 11564–11567 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lv, L., Qiu, Z., Li, J., Liu, M. & Li, C.-J. N2H4 as traceless mediator for homo- and cross-aryl coupling. Nat. Commun. 9, 4739 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Charboneau, D. J. et al. Tunable and practical homogeneous organic reductants for cross-electrophile coupling. J. Am. Chem. Soc. 143, 21024–21036 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, H. et al. An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases. Nature 610, 302–307 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charboneau, D. J., Hazari, N., Huang, H., Uehling, M. R. & Zultanski, S. L. Homogeneous organic electron donors in nickel-catalyzed reductive transformations. J. Org. Chem. 87, 7589–7609 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, R.-D. et al. Reductive alkylation of alkenyl acetates with alkyl bromides by nickel catalysis. Angew. Chem. Int. Ed. 61, e202114556 (2022).Article 
CAS 

Google Scholar 
Guo, P. et al. Dynamic kinetic cross-electrophile arylation of benzyl alcohols by nickel catalysis. J. Am. Chem. Soc. 143, 513–523 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lin, Q. & Diao, T. Mechanism of Ni-catalyzed reductive 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 17937–17948 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin-Montero, R., Yatham, V. R., Yin, H., Davies, J. & Martin, R. Ni-catalyzed reductive deaminative arylation at sp3 carbon centers. Org. Lett. 21, 2947–2951 (2019).Article 
CAS 
PubMed 

Google Scholar 
Day, C. S. et al. Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions. Nat. Catal. 6, 244–253 (2023).Article 
CAS 

Google Scholar 
Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions 2nd edn (National Association of Corrosion Engineers, 1974).Yu, Y. et al. High-voltage rechargeable aqueous zinc-based batteries: latest progress and future perspectives. Small Sci. 1, 2000066 (2021).Article 
CAS 

Google Scholar 
Pavlishchuk, V. V. & Addison, A. W. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 °C. Inorg. Chim. Acta 298, 97–102 (2000).Article 
CAS 

Google Scholar 
Kissinger, P. & Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded (CRC Press, 2018).Khedr, M. G. A. & Lashien, A. M. S. Corrosion behavior of aluminum in the presence of accelerating metal cations and inhibition. J. Electrochem. Soc. 136, 968 (1989).Article 
CAS 

Google Scholar 
Brett, C. M. A., Gomes, I. A. R. & Martins, J. P. S. The electrochemical behaviour and corrosion of aluminium in chloride media. The effect of inhibitor anions. Corros. Sci. 36, 915–923 (1994).Article 
CAS 

Google Scholar 
Zdrachek, E. & Bakker, E. Potentiometric sensing. Anal. Chem. 91, 2–26 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pillai, P., Sundaresan, S., Kumar, P., Pattipati, K. R. & Balasingam, B. Open-circuit voltage models for battery management systems: a review. Energies 15, 6803 (2022).Article 
CAS 

Google Scholar 
Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).Article 
CAS 
PubMed 

Google Scholar 
Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).Article 
CAS 

Google Scholar 
Mirabi, B., Marchese, A. D. & Lautens, M. Nickel-catalyzed reductive cross-coupling of heteroaryl chlorides and aryl chlorides. ACS Catal. 11, 12785–12793 (2021).Article 
CAS 

Google Scholar 
Kang, K., Huang, L. & Weix, D. J. Sulfonate versus sulfonate: nickel and palladium multimetallic cross-electrophile coupling of aryl triflates with aryl tosylates. J. Am. Chem. Soc. 142, 10634–10640 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, L., Ackerman, L. K. G., Kang, K., Parsons, A. M. & Weix, D. J. LiCl-accelerated multimetallic cross-coupling of aryl chlorides with aryl triflates. J. Am. Chem. Soc. 141, 10978–10983 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rafiee, M., Mayer, M. N., Punchihewa, B. T. & Mumau, M. R. Constant potential and constant current electrolysis: an introduction and comparison of different techniques for organic electrosynthesis. J. Org. Chem. 86, 15866–15874 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ni, S. et al. Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C─N bond activation. Sci. Adv. 5, eaaw9516 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yue, H. et al. Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao, J. et al. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 21, 2941–2946 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Twitty, J. C. et al. Diversifying amino acids and peptides via deaminative reductive cross-couplings leveraging high-throughput experimentation. J. Am. Chem. Soc. 145, 5684–5695 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Klein, P., Lechner, V. D., Schimmel, T. & Hintermann, L. Generation of organozinc reagents by nickel diazadiene complex catalyzed zinc insertion into aryl sulfonates. Chem. Eur. J. 26, 176–180 (2020).Article 
CAS 
PubMed 

Google Scholar 
Nimmagadda, S. K. et al. Development and execution of an Ni(II)-catalyzed reductive cross-coupling of substituted 2-chloropyridine and ethyl 3-chloropropanoate. Org. Process Res. Dev. 24, 1141–1148 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles