ARGV: 3D genome structure exploration using augmented reality | BMC Bioinformatics

Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17(11):661–78.Article 
CAS 
PubMed 

Google Scholar 
Hsieh T-HS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian R, Darzacq X. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol Cell. 2020;78(3):539–53.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim K, Jang I, Kim M, Choi J, Kim M-S, Lee B, Jung I. 3div update for 2021: a comprehensive resource of 3D genome and 3D cancer genome. Nucleic Acids Res. 2021;49(D1):D38–46.Article 
CAS 
PubMed 

Google Scholar 
Ahmed M, Soares F, Xia J-H, Yang Y, Li J, Guo H, Peiran S, Tian Y, Lee HJ, Wang M, et al. Crispri screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat Commun. 2021;12(1):1781.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dubois F, Sidiropoulos N, Weischenfeldt J, Beroukhim R. Structural variations in cancer and the 3D genome. Nat Rev Cancer. 2022;22(9):533–46.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beagan JA, Phillips-Cremins JE. On the existence and functionality of topologically associating domains. Nat Genet. 2020;52(1):8–16.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bradley Bernstein MA, Bender MG, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas L-M, Branco MR, et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature. 2017;543(7646):519–24.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hsieh T-HS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell. 2015;162(1):108–19.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bintu B, Mateo LJ, Jun-Han S, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang X. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362(6413):eaau1783.Article 
PubMed 
PubMed Central 

Google Scholar 
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Ming H, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–80.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol. 2021;22(8):511–28.Article 
CAS 
PubMed 

Google Scholar 
MacKay K, Kusalik A. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Brief Funct Genom. 2020;19(4):292–308.Article 
CAS 

Google Scholar 
Varoquaux N, Ay F, Noble WS, Vert J-P. A statistical approach for inferring the 3D structure of the genome. Bioinformatics. 2014;30(12):i26–33.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boninsegna L, Yildirim A, Polles G, Zhan Y, Quinodoz SA, Finn EH, Guttman M, Zhou XJ, Alber F. Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations. Nat Methods. 2022;19(8):938–49.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Varoquaux N, Noble WS, Vert J-P. Inference of 3D genome architecture by modeling overdispersion of Hi-C data. Bioinformatics. 2023;39(1):btac838.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Stanley Fields C, Blau A, Noble WS. A three-dimensional model of the yeast genome. Nature. 2010;465(7296):363–7.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert J-P, Noble WS, Le Roch KG. Three-dimensional modeling of the p. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res. 2014;24(6):974–88.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rieber L, Mahony S. minimds: 3D structural inference from high-resolution Hi-C data. Bioinformatics. 2017;33(14):i261–6.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang Y, Weiwei Liu Yu, Lin YK, Ng SL. Large-scale 3D chromatin reconstruction from chromosomal contacts. BMC Genom. 2019;20(2):129–41.
Google Scholar 
Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinform. 2011;12(1):1–16.Article 

Google Scholar 
Ming H, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J, Ren B, Liu JS. Bayesian inference of spatial organizations of chromosomes. PLoS Comput Biol. 2013;9(1): e1002893.Article 

Google Scholar 
Zou C, Zhang Y, Ouyang Z. HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure. Genome Biol. 2016;17:1–14.Article 

Google Scholar 
Butyaev A, Mavlyutov R, Blanchette M, Cudré-Mauroux P, Waldispühl J. A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data. Nucleic Acids Res. 2015;43(16): e103.Article 
PubMed 
PubMed Central 

Google Scholar 
Zhu X, Zhang Y, Wang Y, Tian D, Belmont AS, Swedlow JR, Ma J. Nucleome browser: an integrative and multimodal data navigation platform for 4d nucleome. Nat Methods. 2022;19(8):911–3.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li D, Harrison JK, Purushotham D, Wang T. Exploring genomic data coupled with 3D chromatin structures using the Washu epigenome browser. Nat Methods. 2022;19(8):909–10.Article 
CAS 
PubMed 

Google Scholar 
Marti-Renom MA, Mirny LA. Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput Biol. 2011;7(7):1–6.Article 

Google Scholar 
Goodstadt NM, Marti-Renom MA. Challenges for visualizing three-dimensional data in genomic browsers. FEBS Lett. 2017;591(17):2505–19.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goodstadt NM, Marti-Renom MA. Communicating genome architecture: biovisualization of the genome, from data analysis and hypothesis generation to communication and learning. J Mol Biol. 2019;431(6):1071–87.Article 
CAS 
PubMed 

Google Scholar 
Waldispühl J, Zhang E, Butyaev A, Nazarova E, Cyr Y. Storage, visualization, and navigation of 3D genomics data. Methods. 2018;142(74–80):06.
Google Scholar 
Ganapathy A. Virtual reality and augmented reality driven real estate world to buy properties. Asian J Humanit Art Lit. 2016;3(2):137–46.Article 

Google Scholar 
Farshid M, Paschen J, Eriksson T, Kietzmann J. Go boldly!: Explore augmented reality (AR), virtual reality (VR), and mixed reality (MR) for business. Bus Horiz. 2018;61(5):657–63.Article 

Google Scholar 
Dhar P, Rocks T, Samarasinghe RM, Stephenson G, Smith C. Augmented reality in medical education: students’ experiences and learning outcomes. Med Educ Online. 2021;26(1):1953953.Article 
PubMed 
PubMed Central 

Google Scholar 
Alsop T. Number of mobile augmented reality (AR) active user devices worldwide from 2019 to 2024. 02 2021.Asbury TM, Mitman M, Jijun Tang W, Zheng J. Genome3d: a viewer-model framework for integrating and visualizing multi-scale epigenomic information within a three-dimensional genome. BMC Bioinform. 2010;11:444.Article 

Google Scholar 
Nowotny J, Wells A, Oluwadare O, Lingfei X, Cao R, Trieu T, He C, Cheng J. GMOL: an interactive tool for 3D genome structure visualization. Sci Rep. 2016;6:20802.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Trieu T, Oluwadare O, Wopata J, Cheng J. GenomeFlow: a comprehensive graphical tool for modeling and analyzing 3D genome structure. Bioinformatics. 2019;35(8):1416–8.Li R, Liu Y, Li T, Li C. 3Disease browser: a web server for integrating 3D genome and disease-associated chromosome rearrangement data. Sci Rep. 2016;6:34651.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Serra F, Baù D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput Biol. 2017;13(7): e1005665.Article 
PubMed 
PubMed Central 

Google Scholar 
Todd S, Todd P, McGowan SJ, Hughes JR, Kakui Y, Leymarie FF, Latham W, Taylor S. Csynth: an interactive modelling and visualization tool for 3D chromatin structure. Bioinformatics. 2021;37(7):951–5.Article 
CAS 
PubMed 

Google Scholar 
Wolle P, Muller MP, Rauh D. Augmented reality in scientific publications-taking the visualization of 3D structures to the next level. ACS Chem Biol. 2018;13(3):496–9.Article 
CAS 
PubMed 

Google Scholar 
Yiu C-PB, Chen YW. Molecular data visualization with augmented reality (AR) on mobile devices. In: Structural genomics. Springer; 2021. p. 347–56.Tang B, Li X, Li G, Tian D, Li F, Zhang Z. Delta.AR: An augmented reality-based visualization platform for 3D genome. Innovation. 2021;2(3): 100149.CAS 
PubMed 
PubMed Central 

Google Scholar 
Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’shea CC, Park PJ, Ren B, et al. The 4D nucleome project. Nature. 2017;549(7671):219–26.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, Aiden EL. Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell Syst. 2018;6(2):256–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K, et al. New developments on the encyclopedia of DNA elements (encode) data portal. Nucleic Acids Res. 2020;48(D1):D882–9.Article 
CAS 
PubMed 

Google Scholar 
Oluwadare O, Highsmith M, Turner D, Aiden EL, Cheng J. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data. BMC Mol Cell Biol. 2020;21(1):1–10.
Google Scholar 
Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative toxicogenomics database (CTD): update 2023. Nucleic Acids Res. 2023;51(D1):D1257–62.Article 
CAS 
PubMed 

Google Scholar 
Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM, Ouellette SB, Azhir A, Kumar N, et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018;19(1):1–12.Article 

Google Scholar 
Trieu T, Cheng J. 3D genome structure modeling by Lorentzian objective function. Nucleic Acids Res. 2017;45(3):1049–58.Article 
CAS 
PubMed 

Google Scholar 
Zhang É, Drogaris C, Gédon A, Sossin A, Faraj R, Chen H, Cyr Y, Majewski J, Blanchette M, Waldispühl J. 3DGV: Immersive exploration of 3d genome structures using virtual reality. bioRxiv. 2019;page 855379.open2c. open2c/distiller-nf: a modular hi-c mapping pipeline. GitHub, 2019.Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012;9(10):999.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics. 2020;36(1):311–6.Article 
CAS 
PubMed 

Google Scholar 
Cameron CJF, Dostie J, Blanchette M. HIFI: estimating DNA–DNA interaction frequency from Hi-C data at restriction-fragment resolution. Genome Biol. 2020;21(1):1–15.Article 

Google Scholar 
Shin H, Shi Y, Dai C, Tjong H, Gong K, Alber F, Zhou XJ. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 2016;44(7):e70–e70.Article 
PubMed 

Google Scholar 
Kruse K, Hug CB, Vaquerizas JM. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 2020;21(1):1–19.Article 

Google Scholar 

Hot Topics

Related Articles