Lattice-sulfur-impregnated zero-valent iron crystals for long-term metal encapsulation

Ferguson, G., Cuthbert, M. O., Befus, K., Gleeson, T. & McIntosh, J. C. Rethinking groundwater age. Nat. Geosci. 13, 592–594 (2020).Article 
CAS 

Google Scholar 
Alley, A. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).Article 
CAS 

Google Scholar 
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).Article 

Google Scholar 
Wang, C. & Zhang, W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997).Article 
CAS 

Google Scholar 
Ponder, S. M., Darab, J. G. & Mallouk, T. E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34, 2564–2569 (2000).Article 
CAS 

Google Scholar 
Liu, Y., Wu, T., White, J. C., Lin, D. & New, A. Strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 16, 197–205 (2021).Article 
CAS 

Google Scholar 
Qu, J. et al. A multiple Kirkendall strategy for converting nanosized zero-valent iron to highly active Fenton-like catalyst for organic degradation. Proc. Natl Acad. Sci. USA 120, e2304552120 (2023).Article 
CAS 

Google Scholar 
Li, M. et al. Highly selective synthesis of surface FeIV=O with nanoscale zero-valent iron and chlorite for efficient oxygen transfer reactions. Proc. Natl Acad. Sci. USA 120, e2304562120 (2023).Article 
CAS 

Google Scholar 
Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S. & Lowry, G. V. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 44, 3455–3461 (2010).Article 
CAS 

Google Scholar 
Xu, C. et al. Sequestration of antimonite by zerovalent iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environ. Sci. Technol. 50, 1483–1491 (2016).Article 
CAS 

Google Scholar 
White, J. J., Hinsch, J. J., Bennett, W. W. & Wang, Y. Theoretical understanding of water adsorption on stepped iron surfaces. Appl. Surf. Sci. 605, 154650 (2022).Article 
CAS 

Google Scholar 
Li, J., Guan, X. & Zhang, W. Architectural genesis of metal(loid)s with iron nanoparticle in water. Environ. Sci. Technol. 55, 12801–12808 (2021).CAS 

Google Scholar 
Gao, X. et al. Surface modulation and chromium complexation: all-in-one solution for the Cr(VI) sequestration with bifunctional molecules. Environ. Sci. Technol. 54, 8373–8379 (2020).Article 
CAS 

Google Scholar 
Yan, W., Vasic, R., Frenkel, A. I. & Koel, B. E. Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent Iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environ. Sci. Technol. 46, 7018–7026 (2012).Article 
CAS 

Google Scholar 
Ling, L. & Zhang, W. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc. 137, 2788–2791 (2015).Article 
CAS 

Google Scholar 
Brown, G. E., Foster, A. L. & Ostergren, J. D. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc. Natl Acad. Sci. USA 96, 3388–3395 (1999).Article 
CAS 

Google Scholar 
Su, Y., Jassby, D., Zhang, Y., Keller, A. A. & Adeleye, A. S. Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives. J. Hazard. Mater. 396, 122691 (2020).Article 
CAS 

Google Scholar 
Miranda, L. S., Wijesiri, B., Ayoko, G. A., Egodawatta, P. & Goonetilleke, A. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res. 202, 117386 (2021).Article 
CAS 

Google Scholar 
Nutt, M. O., Hughes, J. B. & Wong, M. S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ. Sci. Technol. 39, 1346–1353 (2005).Article 
CAS 

Google Scholar 
Duan, X., O’ Donnell, K., Sun, H., Wang, Y. & Wang, S. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 11, 3036–3044 (2015).Article 
CAS 

Google Scholar 
Wei, D. et al. Decrypting the controlled product selectivity over Ag-Cu bimetallic surface alloys for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202217369 (2023).Article 
CAS 

Google Scholar 
Xu, J. et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environ. Sci. Technol. 53, 5936–5945 (2019).Article 
CAS 

Google Scholar 
Xu, J. et al. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Adv. Mater. 32, 1906910 (2020).Article 
CAS 

Google Scholar 
Xu, J., Li, H. & Lowry, G. V. Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation. Acc. Mater. Res. 2, 420–431 (2021).Article 
CAS 

Google Scholar 
Garcia, A. N., Zhang, Y., Ghoshal, S., He, F. & O’Carroll, D. M. Recent advances in sulfidated zerovalent iron for contaminant transformation. Environ. Sci. Technol. 55, 8464–8483 (2021).Article 
CAS 

Google Scholar 
Meng, F., Xu, J., Dai, H., Yu, Y. & Lin, D. Even incorporation of nitrogen into Fe0 nanoparticles as crystalline Fe4N for efficient and selective trichloroethylene degradation. Environ. Sci. Technol. 56, 4489–4497 (2022).Article 
CAS 

Google Scholar 
Wei, K. et al. Strained zero-valent iron for highly efficient heavy metal removal. Adv. Funct. Mater. 32, 2200498 (2022).Article 
CAS 

Google Scholar 
Rajajayavel, S. R. & Ghoshal, S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res. 78, 144–153 (2015).Article 
CAS 

Google Scholar 
Fan, D., O’Brien Johnson, G., Tratnyek, P. G. & Johnson, R. L. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in situ chemical reduction (ISCR). Environ. Sci. Technol. 50, 9558–9565 (2016).Article 
CAS 

Google Scholar 
Fan, D. et al. Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation. Environ. Sci. Technol. 51, 13070–13085 (2017).Article 
CAS 

Google Scholar 
Bhattacharjee, S. & Ghoshal, S. Optimal design of sulfidated nanoscale zerovalent iron for enhanced trichloroethene degradation. Environ. Sci. Technol. 52, 11078–11086 (2018).Article 
CAS 

Google Scholar 
Wu, J., Zhao, J., Hou, J., Zeng, R. J. & Xing, B. Degradation of tetrabromobisphenol a by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process. Environ. Sci. Technol. 53, 8105–8114 (2019).Article 
CAS 

Google Scholar 
Su, Y. et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res. 74, 47–57 (2015).Article 
CAS 

Google Scholar 
Cheng, Q. et al. Impact of strain relaxation on 2D Ruddlesden–Popper perovskite solar cells. Angew. Chem. Int. Ed. 61, 202208264 (2022).Article 

Google Scholar 
Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).Article 
CAS 

Google Scholar 
Xiao, S. et al. Microwave-induced metal dissolution synthesis of core–shell copper nanowires/ZnS for visible light photocatalytic H2 evolution. Adv. Energy Mater. 9, 1900775 (2019).Article 

Google Scholar 
Zhou, H. M., Xiong, L., Chen, L. & Wu, L. M. Dislocations that decrease size mismatch within the lattice leading to ultrawide band gap, large second-order susceptibility, and high nonlinear optical performance of AgGaS2. Angew. Chem. Int. Ed. 58, 9979–9983 (2019).Article 
CAS 

Google Scholar 
Tantardini, C. & Oganov, A. R. Thermochemical electronegativities of the elements. Nat. Commun. 12, 2087 (2021).Article 
CAS 

Google Scholar 
Cao, Z. et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environ. Sci. Technol. 55, 2628–2638 (2021).Article 
CAS 

Google Scholar 
Li, M. et al. Kirkendall effect boosts phosphorylated nZVI for efficient heavy metal wastewater treatment. Angew. Chem. Int. Ed. 60, 17115–17122 (2021).Article 
CAS 

Google Scholar 
Kim, J. H., Tratnyek, P. G. & Chang, Y. S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ. Sci. Technol. 42, 4106–4112 (2008).Article 
CAS 

Google Scholar 
He, F. et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ. Sci. Technol. 52, 8627–8637 (2018).Article 
CAS 

Google Scholar 
Feng, X. et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004).Article 
CAS 

Google Scholar 
Agosta, L., Arismendi-Arrieta, D., Dzugutov, M. & Hermansson, K. Origin of the hydrophobic behaviour of hydrophilic CeO2. Angew. Chem. Int. Ed. 62, e202303910 (2023).Article 
CAS 

Google Scholar 
Kouser, S. et al. Extraordinary changes in the electronic structure and properties of CdS and ZnS by anionic substitution: cosubstitution of P and Cl in Place of S. Angew. Chem. Int. Ed. 54, 8149–8153 (2015).Article 
CAS 

Google Scholar 
Wu, E. et al. Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat. Commun. 14, 6146 (2023).Article 
CAS 

Google Scholar 
Cao, Z. et al. Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environ. Sci. Nano 8, 2607–2617 (2021).Article 
CAS 

Google Scholar 
Shang, H. et al. Scalable and selective gold recovery from end-of-life electronics. Nat. Chem. Eng. 1, 170–179 (2024).Article 

Google Scholar 
Liu, Y., Qiao, J., Sun, Y. & Guan, X. Simultaneous sequestration of humic acid-complexed Pb(II), Zn(II), Cd(II), and As(V) by sulfidated zero-valent iron: performance and stability of sequestration products. Environ. Sci. Technol. 56, 3127–3137 (2022).Article 
CAS 

Google Scholar 
Song, I. G. et al. Assessment of sulfidated nanoscale zerovalent iron for in-situ remediation of cadmium-contaminated acidic groundwater at a zinc smelter. J. Hazard. Mater. 441, 129915 (2023).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles