Systematic review and feasibility study on pre-analytical factors and genomic analyses on archival formalin-fixed paraffin-embedded breast cancer tissue

Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Primers 5, 1–31. https://doi.org/10.1038/s41572-019-0111-2 (2019).Greytak, S. R., Engel, K. B., Bass, B. P. & Moore, H. M. Accuracy of molecular data generated with ffpe biospecimens: Lessons from the literature. Can. Res. 75, 1541–1547. https://doi.org/10.1158/0008-5472.CAN-14-2378 (2015).Article 
CAS 

Google Scholar 
Bass, B. P., Engel, K. B., Greytak, S. R. & Moore, H. M. A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (ffpe) tissue: How well do you know your ffpe specimen?. Arch. Pathol. Lab. Med. 138, 1520–1530. https://doi.org/10.5858/ARPA.2013-0691-RA (2014).Article 
PubMed 

Google Scholar 
Bonin, S. & Stanta, G. Nucleic acid extraction methods from fixed and paraffin-embedded tissues in cancer diagnostics. Expert Rev. Mol. Diagn. 13, 271–282. https://doi.org/10.1586/ERM.13.14 (2013).Article 
CAS 
PubMed 

Google Scholar 
Romero-Pérez, L. & Grünewald, T. G. Tissue preservation and ffpe samples: Optimized nucleic acids isolation in ewing sarcoma. Methods Mol. Biol. 2226, 27–38. https://doi.org/10.1007/978-1-0716-1020-6_3 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fox, C. H., Johnson, F. B., Whiting, J. & Roller, P. P. Formaldehyde fixation. J. Histochem. Cytochem. 33, 845–853. https://doi.org/10.1177/33.8.3894502 (1985).Article 
CAS 
PubMed 

Google Scholar 
Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde crosslinking: A tool for the study of chromatin complexes. J. Biol. Chem. 290, 26404–26411. https://doi.org/10.1074/JBC.R115.651679 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hewitt, S. M. et al. Tissue handling and specimen preparation in surgical pathology: Issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch. Pathol. Lab. Med. 132, 1929–1935. https://doi.org/10.5858/132.12.1929 (2008).Article 
PubMed 

Google Scholar 
Thavarajah, R., Mudimbaimannar, V. K., Elizabeth, J., Rao, U. K. & Ranganathan, K. Chemical and physical basics of routine formaldehyde fixation. J. Oral Maxillofac. Pathol. 16, 400–405. https://doi.org/10.4103/0973-029X.102496 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Carithers, L. J. et al. The biospecimen preanalytical variables program: A multiassay comparison of effects of delay to fixation and fixation duration on nucleic acid quality. Arch. Pathol. Lab. Med. 143, 1106–1118. https://doi.org/10.5858/ARPA.2018-0172-OA (2019).Article 
CAS 
PubMed 

Google Scholar 
Greytak, S. R., Engel, K. B. & Moore, H. M. Maximizing the utility of archival formalin-fixed paraffin-embedded blocks for nucleic acid analysis. https://home.liebertpub.com/bio16, 245–246. https://doi.org/10.1089/BIO.2018.29042.SJG (2018).Page, M. J. et al. The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372. https://doi.org/10.1136/BMJ.N71 (2021).Bramer, W. & Bain, P. Updating search strategies for systematic reviews using endnote. J. Med. Library Assoc. 105, 285–289. https://doi.org/10.5195/JMLA.2017.183 (2017).Bramer, W. M., Giustini, D., de Jonge, G. B., Holland, L. & Bekhuis, T. De-duplication of database search results for systematic reviews in endnote. J. Med. Library Assoc. 104, 240–243. https://doi.org/10.5195/JMLA.2016.24 (2016).Margolin, S. et al. A randomised feasibility/phase ii study (sbg 2004–1) with dose-dense/tailored epirubicin, cyclophoshamide (ec) followed by docetaxel (t) or fixed dosed dose-dense ec/t versus t, doxorubicin and c (tac) in node-positive breast cancer. Acta Oncol. 50, 35–41. https://doi.org/10.3109/0284186X.2010.535847 (2011).Article 
CAS 
PubMed 

Google Scholar 
Matikas, A. et al. Long-term safety and survival outcomes from the scandinavian breast group 2004–1 randomized phase ii trial of tailored dose-dense adjuvant chemotherapy for early breast cancer. Breast Cancer Res. Treat. 168, 349–355. https://doi.org/10.1007/S10549-017-4599-4 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zerdes, I. et al. Interplay between copy number alterations and immune profiles in the early breast cancer scandinavian breast group 2004-1 randomized phase ii trial: results from a feasibility study. NPJ Breast Cancer 7, 1–11. https://doi.org/10.1038/s41523-021-00352-3 (2021).Foukakis, T. et al. Effect of tailored dose-dense chemotherapy vs standard 3-weekly adjuvant chemotherapy on recurrence-free survival among women with high-risk early breast cancer: a randomized clinical trial. JAMA 316, 1888–1896 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wilfinger, W. W., Mackey, K. & Chomczynski, P. Effect of ph and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22, 474–481. https://doi.org/10.2144/97223ST01 (1997).Article 
CAS 
PubMed 

Google Scholar 
Asl, H. F. Balsamic: A bioinformatic analysis pipeline for somatic mutations in cancer [online] (2019). Available online at: https://github.com/Clinical-Genomics/BALSAMIC.Andrews, S. Fastqc: A quality control tool for high throughput sequence data [online] (2010). Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/BIOINFORMATICS/BTY560 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, H. & Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/BIOINFORMATICS/BTP352 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, H. & Barrett, J. A statistical framework for snp calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. https://doi.org/10.1093/BIOINFORMATICS/BTR509 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Picard toolkit.” 2018. broad institute, github repository. available online at: http://broadinstitute.github.io/picard/ (2018).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. Multiqc: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/BIOINFORMATICS/BTW354 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lai, Z. et al. Vardict: A novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 44, e108–e108. https://doi.org/10.1093/NAR/GKW227 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 1–14. https://doi.org/10.1186/S13059-016-0974-4 (2016).Article 

Google Scholar 
Do, H. & Dobrovic, A. Sequence artifacts in dna from formalin-fixed tissues: Causes and strategies for minimization. Clin. Chem. 61, 64–71. https://doi.org/10.1373/CLINCHEM.2014.223040 (2015).Article 
CAS 
PubMed 

Google Scholar 
Spencer, D. H. et al. Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. J. Mol. Diagn. 15, 623–633. https://doi.org/10.1016/j.jmoldx.2013.05.004 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bhagwate, A. V. et al. Bioinformatics and dna-extraction strategies to reliably detect genetic variants from ffpe breast tissue samples. BMC Genomics 20, 1–10. https://doi.org/10.1186/S12864-019-6056-8 (2019).Article 
CAS 

Google Scholar 
Chen, S. et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv 2022.03.20.485034. https://doi.org/10.1101/2022.03.20.485034 (2022).Tate, J. G. et al. Cosmic: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947. https://doi.org/10.1093/NAR/GKY1015 (2019).Article 
CAS 
PubMed 

Google Scholar 
Manders, F. et al. Mutationalpatterns: The one stop shop for the analysis of mutational processes. BMC Genomics 23, 1–18. https://doi.org/10.1186/S12864-022-08357-3 (2022).Article 

Google Scholar 
Bibikova, M. et al. Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. Am. J. Pathol. 165, 1799–1807. https://doi.org/10.1016/S0002-9440(10)63435-9 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Loudig, O. et al. Molecular restoration of archived transcriptional profiles by complementary-template reverse-transcription (ct-rt). Nucleic Acids Res. 35, e94. https://doi.org/10.1093/NAR/GKM510 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Duenwald, S. et al. Development of a microarray platform for ffpet profiling: application to the classification of human tumors. J. Transl. Med. 7. https://doi.org/10.1186/1479-5876-7-65 (2009).Waddell, N. et al. Gene expression profiling of formalin-fixed, paraffin-embedded familial breast tumours using the whole genome-dasl assay. J. Pathol. 221, 452–461. https://doi.org/10.1002/PATH.2728 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kibriya, M. G. et al. Analyses and interpretation of whole-genome gene expression from formalin-fixed paraffin-embedded tissue: an illustration with breast cancer tissues. BMC Genomics11. https://doi.org/10.1186/1471-2164-11-622 (2010).Mittempergher, L. et al. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PloS One 6. https://doi.org/10.1371/JOURNAL.PONE.0017163 (2011).Morrogh, M. et al. Differentially expressed genes in window trials are influenced by the wound-healing process: Lessons learned from a pilot study with anastrozole. J. Surg. Res. 176, 121–132. https://doi.org/10.1016/J.JSS.2011.05.058 (2012).Article 
CAS 
PubMed 

Google Scholar 
Meng, W. et al. Comparison of microrna deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. PLoS ONE 8, e64393. https://doi.org/10.1371/JOURNAL.PONE.0064393 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, S. et al. Deep sequencing reveals small rna characterization of invasive micropapillary carcinomas of the breast. Breast Cancer Res. Treat. 136, 77–87. https://doi.org/10.1007/S10549-012-2166-6 (2012).Article 
CAS 
PubMed 

Google Scholar 
Norton, N. et al. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors. PLoS ONE 8, e81925. https://doi.org/10.1371/JOURNAL.PONE.0081925 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Sapino, A. et al. Mammaprint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J. Mol. Diagn. JMD 16, 190–197. https://doi.org/10.1016/J.JMOLDX.2013.10.008 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nishio, M. et al. 72-gene classifier for predicting prognosis of estrogen receptor-positive and node-negative breast cancer patients using formalin-fixed, paraffin-embedded tumor tissues. Clin. Breast Cancer 14. https://doi.org/10.1016/J.CLBC.2013.11.006 (2014).Andrade, V. P. et al. Gene expression profiling of lobular carcinoma in situ reveals candidate precursor genes for invasion. Mol. Oncol. 9, 772–782. https://doi.org/10.1016/J.MOLONC.2014.12.005 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhao, W. et al. Comparison of rna-seq by poly (a) capture, ribosomal rna depletion, and dna microarray for expression profiling. BMC Genom. textbf15. https://doi.org/10.1186/1471-2164-15-419 (2014).Musella, V. et al. Use of formalin-fixed paraffin-embedded samples for gene expression studies in breast cancer patients. PloS One 10. https://doi.org/10.1371/JOURNAL.PONE.0123194 (2015).Beumer, I. et al. Equivalence of mammaprint array types in clinical trials and diagnostics. Breast Cancer Res. Treat. 156, 279. https://doi.org/10.1007/S10549-016-3764-5 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Jovanović, B. et al. Comparison of triple-negative breast cancer molecular subtyping using rna from matched fresh-frozen versus formalin-fixed paraffin-embedded tissue. BMC Cancer17. https://doi.org/10.1186/S12885-017-3237-1 (2017).Loudig, O. et al. Evaluation and adaptation of a laboratory-based cdna library preparation protocol for retrospective sequencing of archived micrornas from up to 35-year-old clinical ffpe specimens. Int. J. Mol. Sci. 18, 627. https://doi.org/10.3390/IJMS18030627 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Yamaguchi, S. et al. Molecular and clinical features of the tp53 signature gene expression profile in early-stage breast cancer. Oncotarget 9, 14193–14206. https://doi.org/10.18632/ONCOTARGET.24447 (2018).Jose, V. et al. Feasibility of developing reliable gene expression modules from ffpe derived rna profiled on affymetrix arrays. PLoS ONE 13, e0203346. https://doi.org/10.1371/JOURNAL.PONE.0203346 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Loudig, O., Liu, C., Rohan, T. & Ben-Dov, I. Z. Retrospective microrna sequencing: Complementary dna library preparation protocol using formalin-fixed paraffin-embedded rna specimens. J. Vis. Exp. JoVE 2018, 57471. https://doi.org/10.3791/57471 (2018).Article 
CAS 

Google Scholar 
Wrzeszczynski, K. O. et al. Analytical validation of clinical whole-genome and transcriptome sequencing of patient-derived tumors for reporting targetable variants in cancer. J. Mol. Diagn. JMD 20, 822–835. https://doi.org/10.1016/J.JMOLDX.2018.06.007 (2018).Article 
CAS 
PubMed 

Google Scholar 
Li, J., Fu, C., Speed, T. P., Wang, W. & Symmans, W. F. Accurate rna sequencing from formalin-fixed cancer tissue to represent high-quality transcriptome from frozen tissue. JCO Precis. Oncol. 1–9, 2018. https://doi.org/10.1200/PO.17.00091 (2018).Article 

Google Scholar 
Stewart, R. L. et al. A multigene assay determines risk of recurrence in patients with triple-negative breast cancer. Can. Res. 79, 3466–3478. https://doi.org/10.1158/0008-5472.CAN-18-3014 (2019).Article 
CAS 

Google Scholar 
Marczyk, M. et al. The impact of rna extraction method on accurate rna sequencing from formalin-fixed paraffin-embedded tissues. BMC Cancer 19, 1–12. https://doi.org/10.1186/S12885-019-6363-0 (2019).Article 
MathSciNet 

Google Scholar 
Turnbull, A. K. et al. Unlocking the transcriptomic potential of formalin-fixed paraffin embedded clinical tissues: Comparison of gene expression profiling approaches. BMC Bioinformatics 21, 1–10. https://doi.org/10.1186/S12859-020-3365-5 (2020).Article 

Google Scholar 
Sun, J. et al. Development of malignancy-risk gene signature assay for predicting breast cancer risk. J. Surg. Res. 245, 153–162. https://doi.org/10.1016/J.JSS.2019.07.021 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lau, R. et al. Technical validity of a customized assay of sensitivity to endocrine therapy using sections from fixed breast cancer tissue. Clin. Chem. 66, 934–945. https://doi.org/10.1093/CLINCHEM/HVAA105 (2020).Article 
PubMed 

Google Scholar 
Bergeron, D. et al. Rna-seq for the detection of gene fusions in solid tumors: development and validation of the jax fusionseq\(^{{\rm TM}}\) 2.0 assay. J. Mol. Med. (Berlin, Germany)100, 323–335. https://doi.org/10.1007/S00109-021-02149-0 (2022).Liu, Y. et al. Quality control recommendations for rnaseq using ffpe samples based on pre-sequencing lab metrics and post-sequencing bioinformatics metrics. BMC Med. Genom. 15. https://doi.org/10.1186/S12920-022-01355-0 (2022).Hilmi, M., Armenoult, L., Ayadi, M. & Nicolle, R. Whole-transcriptome profiling on small ffpe samples: Which sequencing kit should be used?. Curr. Issues Mol. Biol. 44, 2186–2193. https://doi.org/10.3390/CIMB44050148 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marczyk, M. et al. Assessment of stained direct cytology smears of breast cancer for whole transcriptome and targeted messenger rna sequencing. Cancer Cytopathol. 131, 289–299. https://doi.org/10.1002/CNCY.22679 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
MacConaill, L. E. et al. Profiling critical cancer gene mutations in clinical tumor samples. PloS One 4. https://doi.org/10.1371/JOURNAL.PONE.0007887 (2009).Schweiger, M. R. et al. Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (ffpe) tumor tissues for copy-number- and mutation-analysis. PloS One 4. https://doi.org/10.1371/JOURNAL.PONE.0005548 (2009).Bourgon, R. et al. High-throughput detection of clinically relevant mutations in archived tumor samples by multiplexed pcr and next-generation sequencing. Clin. Cancer Res. 20, 2080–2091. https://doi.org/10.1158/1078-0432.CCR-13-3114 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Munchel, S. et al. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics. Oncotarget 6, 25943–25961. https://doi.org/10.18632/ONCOTARGET.4671 (2015).Martelotto, L. G. et al. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 23, 376. https://doi.org/10.1038/NM.4279 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Robbe, P. et al. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: pilot study for the 100,000 genomes project. Genet. Med. 20, 1196–1205. https://doi.org/10.1038/GIM.2017.241 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nachmanson, D. et al. Mutational profiling of micro-dissected pre-malignant lesions from archived specimens. BMC Med. Genom. 13. https://doi.org/10.1186/S12920-020-00820-Y (2020).Wei, L., Dugas, M. & Sandmann, S. Simffpe and filterffpe: improving structural variant calling in ffpe samples. GigaScience 10. https://doi.org/10.1093/GIGASCIENCE/GIAB065 (2021).Wimmer, I. et al. Systematic evaluation of rna quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples. Sci. Rep. 8, 1–17. https://doi.org/10.1038/s41598-018-24781-6 (2018).Walker, J. E. et al. Measuring up: A comparison of tapestation 4200 and bioanalyzer 2100 as measurement tools for rna quality in postmortem human brain samples. Int. J. Mol. Sci. 24, 13795 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Landolt, L., Marti, H.-P., Beisland, C., Flatberg, A. & Eikrem, O. S. Rna extraction for rna sequencing of archival renal tissues. Scand. J. Clin. Lab. Invest. 76, 426–434 (2016).Article 
CAS 
PubMed 

Google Scholar 
Steiert, T. A. et al. A critical spotlight on the paradigms of ffpe-dna sequencing. Nucleic Acids Res. 51, 7143. https://doi.org/10.1093/NAR/GKAD519 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berra, C. M. et al. Use of uracil-dna glycosylase enzyme to reduce dna-related artifacts from formalin-fixed and paraffin-embedded tissues in diagnostic routine. Appl. Cancer Res. 39, 1–6. https://doi.org/10.1186/S41241-019-0075-2 (2019).Do, H. et al. Reducing artifactual egfr t790m mutations in dna from formalin-fixed paraffin-embedded tissue by use of thymine-dna glycosylase. Clin. Chem. 63, 1506–1514. https://doi.org/10.1373/CLINCHEM.2017.271932 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bessho, T. et al. Repair of 8-hydroxyguanine in dna by mammalian n-methylpurine-dna glycosylase. Proc. Natl. Acad. Sci. U.S.A. 90, 8901–8904. https://doi.org/10.1073/PNAS.90.19.8901 (1993).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiong, K. et al. Duplex-repair enables highly accurate sequencing, despite dna damage. Nucleic Acids Res. 50. https://doi.org/10.1093/NAR/GKAB855 (2022).Engel, K. B., Vaught, J. & Moore, H. M. National cancer institute biospecimen evidence-based practices: a novel approach to pre-analytical standardization. Biopreserv. Biobank. 12, 148–150 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McDonough, S. J. et al. Use of ffpe-derived dna in next generation sequencing: Dna extraction methods. PLoS ONE 14, e0211400 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles