Selective detection of food contaminants using engineered gallium-organic frameworks with MD and metadynamics simulations

Peng, X., Wu, X., Zhang, M. & Yuan, H. Metal–organic framework coated devices for gas sensing. ACS Sens. 8, 2471–2492 (2023).Article 
PubMed 

Google Scholar 
Zhang, S. R. et al. A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework. Chem. A Eur. J. 20, 3589–3594 (2014).Article 
ADS 

Google Scholar 
Feng, L., Wang, K.-Y., Willman, J. & Zhou, H.-C. Hierarchy in metal–organic frameworks. ACS Cent. Sci. 6, 359–367 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Tang, H., Duan, L. & Jiang, J. Leveraging machine learning for metal-organic frameworks: A perspective. Langmuir 39, 15849–15863 (2023).Article 
PubMed 

Google Scholar 
Chen, Z., Kirlikovali, K. O., Shi, L. & Farha, O. K. Rational design of stable functional metal–organic frameworks. Mater. Horiz. 10, 3257–3268 (2023).Article 
PubMed 

Google Scholar 
Ma, W., Lv, T.-T., Tang, J.-H., Feng, M.-L. & Huang, X.-Y. Highly efficient uptake of Cs+ by robust layered metal-organic frameworks with a distinctive ion exchange mechanism. JACS Au 2, 492–501 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Das, M. C. et al. Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M′ MOFs) for their highly selective separation of chiral and achiral small molecules. J. Am. Chem. Soc. 134, 8703–8710 (2012).Article 
PubMed 

Google Scholar 
Wang, C., An, B. & Lin, W. Metal–organic frameworks in solid–gas phase catalysis. ACS Catal. 9, 130–146 (2018).Article 

Google Scholar 
Li, C., Hai, J., Li, S., Wang, B. & Yang, Z. Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO-/SCN- and anti-counterfeiting. Nanoscale 10, 8667–8676 (2018).Article 
PubMed 

Google Scholar 
Xu, Y., Sun, Y., Yao, Z. & Wei, Y. Hierarchical mesoporous metal-organic frameworks with boric acid sites on the inner surface of small mesopores for the extraction of nucleotides in human plasma samples. ACS Appl. Mater. Interfaces 15, 30643–30652 (2023).Article 
PubMed 

Google Scholar 
Emelianova, A., Reed, A., Basharova, E. A., Kolesnikov, A. L. & Gor, G. Y. Closer look at adsorption of sarin and simulants on metal-organic frameworks. ACS Appl. Mater. Interfaces 15, 18559–18567 (2023).Article 
PubMed 

Google Scholar 
Yan, Y., Wang, C., Cai, Z., Wang, X. & Xuan, F. Tuning electrical and mechanical properties of metal–organic frameworks by metal substitution. ACS Appl. Mater. Interfaces 15, 42845–42853 (2023).Article 
PubMed 

Google Scholar 
Chen, X., Zhang, S.-L., Xiao, S.-H., Li, Z.-F. & Li, G. Ultrahigh proton conductivities of postmodified Hf (IV) metal-organic frameworks and related chitosan-based composite membranes. ACS Appl. Mater. Interfaces 15, 35128–35139 (2023).Article 
PubMed 

Google Scholar 
Xu, Z.-M. et al. Introducing frustrated Lewis pairs to metal–organic framework for selective hydrogenation of N-heterocycles. J. Am. Chem. Soc. 145, 14994–15000 (2023).Article 
PubMed 

Google Scholar 
Liu, S. et al. Nanoscale zinc-based metal-organic frameworks induce neurotoxicity by disturbing the metabolism of catecholamine neurotransmitters. Environ. Sci. Technol. 57, 5380–5390 (2023).Article 
ADS 
PubMed 

Google Scholar 
Gong, W. et al. Reticular chemistry in its chiral form: Axially chiral Zr (IV)-spiro metal–organic framework as a case study. J. Am. Chem. Soc. 145, 13869–13878 (2023).Article 
PubMed 

Google Scholar 
Wen, Y., Zhang, P., Sharma, V. K., Ma, X. & Zhou, H. C. Metal-organic frameworks for environmental applications. Cell Rep. Phys. Sci. 2, 100348 (2021).Article 

Google Scholar 
Zhu, J., Xia, T., Cui, Y., Yang, Y. & Qian, G. A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. J. Solid State Chem. 270, 317–323 (2019).Article 
ADS 

Google Scholar 
Li, B. et al. Emerging multifunctional metal-organic framework materials. Adv. Mater. 28, 8819–8860 (2016).Article 
ADS 
PubMed 

Google Scholar 
Xie, Y., Jiao, Z. H., Dong, J., Hou, S. L. & Zhao, B. Luminescent sensor with high sensitivity and selectivity for amikacin detection in a serum using a unique gallium-organic framework. Inorg. Chem. 62, 5168–5175 (2023).Article 
PubMed 

Google Scholar 
Hong, J. et al. A minireview for recent development of nanomaterial-based detection of antibiotics. Biosensors 13, 327 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, W. et al. Metal-organic framework (MOF)-based sensors for exogenous contaminants in food: Mechanisms, advances, and prospects. Trends Food Sci. Technol. 138, 238–271 (2023).Article 

Google Scholar 
Mohan, B. et al. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental safety. Sep. Purif. Technol. 310, 123175 (2023).Article 

Google Scholar 
Zhang, Z. et al. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 448, 139051 (2024).Article 
PubMed 

Google Scholar 
Yang, Y., Yu, Z. & Sholl, D. S. Machine learning models for predicting molecular diffusion in metal-organic frameworks accounting for the impact of framework flexibility. Chem. Mater. 35, 10156–10168 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Nematollahi, M. H., Mostafavi, E. & Iravani, S. Covalent organic frameworks and metal-organic frameworks against pathogenic viruses and antibiotic-resistant bacteria: Diagnostic and therapeutic applications. J. Environ. Chem. Eng. 11, 109652 (2023).Article 

Google Scholar 
Yao, S.-L. et al. A Zn (II) metal–organic framework with organic fluorescent ligands and hydrogen-bonding network for effectively sensing Al3+ and Ga3+ ions, and proton conduction. J. Mol. Struct. 1297, 136925 (2024).Article 

Google Scholar 
Balakrishnan, A. et al. Chitosan/metal organic frameworks for environmental, energy, and bio-medical applications: A review. Mater. Adv. https://doi.org/10.1039/D3MA00413A (2023).Article 

Google Scholar 
Su, Q., Su, W., Xing, S. & Tan, M. Enhanced stability of anthocyanins by cyclodextrin–metal organic frameworks: Encapsulation mechanism and application as protecting agent for grape preservation. Carbohydr. Polym. 326, 121645 (2024).Article 
PubMed 

Google Scholar 
Mohan, B. et al. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. J. Hazard. Mater. 453, 131324 (2023).Article 
PubMed 

Google Scholar 
Barzegar, F., Kamankesh, M. & Mohammadi, A. Recent development in formation, toxic effects, human health and analytical techniques of food contaminants. Food Rev. Int. 39, 1157–1183 (2023).Article 

Google Scholar 
Akeremale, O. K. et al. Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results Chem. 5, 100866 (2023).Article 

Google Scholar 
Manoj, D., Rajendran, S., Murphy, M., Jalil, A. A. & Sonne, C. Recent progress and perspectives of metal organic frameworks (MOFs) for the detection of food contaminants. Chemosphere 340, 139820 (2023).Article 
PubMed 

Google Scholar 
Chen, Y. et al. Reticular design of precise linker installation into a zirconium metal-organic framework to reinforce hydrolytic stability. J. Am. Chem. Soc. 145, 3055–3063 (2023).Article 
PubMed 

Google Scholar 
Vinothkumar, K., Chandra, L., Mohan, S. & Balakrishna, R. G. Nature-inspired photoactive metal-organic framework nanofiber filters for oil-water separation: conserving successive flux, rejection, and antifouling. Ind. Eng. Chem. Res. 62, 1085–1098 (2023).Article 

Google Scholar 
Balu, K. et al. Fabrication of Bi2O3/bismuth titanates modified with metal–organic framework-in2S3/CdIn2S4 materials for electrocatalytic H2 production and its photoactivity. Langmuir 39, 15055–15066 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Vállez-Gomis, V. et al. The metal–organic framework PCN-250 for the extraction of endocrine disrupting compounds in human urine by stir bar sorptive dispersive microextraction. Microchem. J. 185, 108277 (2023).Article 

Google Scholar 
Quero-Jiménez, P. C. et al. Applicability of NH2-MOF235 (Fe)-derived α-Fe2O3/ZnO photocatalyst synthesized by the microwave-assisted method in the degradation of a mixture of phenolic compounds. J. Photochem. Photobiol. A Chem. 446, 115154 (2024).Article 

Google Scholar 
Li, S. et al. Synthesis of γ-cyclodextrin metal-organic framework as ethylene absorber for improving postharvest quality of kiwi fruit. Food Hydrocoll. 136, 108294 (2023).Article 

Google Scholar 
Xue, S.-J. et al. First natural yeast strain Trichosporon asahii HZ10 with robust flavonoid productivity and its potential biosynthetic pathway. J. Agric. Food Chem. 71, 17130–17140 (2023).
Google Scholar 
Lim, H. J., Prajapati, R., Seong, S. H., Jung, H. A. & Choi, J. S. Antioxidant and antineuroinflammatory mechanisms of kaempferol-3-O-β-d-glucuronate on lipopolysaccharide-stimulated BV2 microglial cells through the Nrf2/HO-1 signaling cascade and MAPK/NF-κB pathway. ACS Omega 8, 6538–6549 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Nassief, S. M. et al. Antiangiogenic pterocarpan and flavonoid constituents of Erythrina lysistemon. J. Nat. Prod. 86, 759–766 (2023).Article 
PubMed 

Google Scholar 
Arias-Sánchez, R. A., Torner, L. & Fenton Navarro, B. Polyphenols and neurodegenerative diseases: Potential effects and mechanisms of neuroprotection. Molecules 28, 1–15 (2023).Article 

Google Scholar 
Butkovic, V., Klasinc, L. & Bors, W. Kinetic study of flavonoid reactions with stable radicals. J. Agric. Food Chem. 52, 2816–2820 (2004).Article 
PubMed 

Google Scholar 
Lai, J. et al. Integrated transcriptomic and metabolomic analyses reveal the molecular and metabolic basis of flavonoids in Areca catechu L. J. Agric. Food Chem. 71, 4851–4862 (2023).Article 
ADS 
PubMed 

Google Scholar 
Wang, X.-J. et al. Regulation mechanism of phenolic hydroxyl number on self-assembly and interaction between edible dock protein and hydrophobic flavonoids. J. Agric. Food Chem. 71, 18510–18523 (2023).Article 
PubMed 

Google Scholar 
Borges, G., Degeneve, A., Mullen, W. & Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 58, 3901–3909 (2010).Article 
PubMed 

Google Scholar 
Bredsdorff, L. et al. Urinary flavonoid excretion and risk of acute coronary syndrome in a nested case-control study. Am. J. Clin. Nutr. 98, 209–216 (2013).Article 
PubMed 

Google Scholar 
Luiz-Ferreira, A. et al. TRAIL-sensitizing effects of flavonoids in cancer. Int. J. Mol. Sci. 24, 1–21 (2023).Article 

Google Scholar 
Yu, J. et al. Multiphase ozonolysis of bisphenol A: Chemical transformations on surfaces in the environment. Environ. Sci. Technol. 58, 3931–3941 (2024).Article 
ADS 
PubMed 

Google Scholar 
Yuan, M. et al. Genetic and epigenetic evidence for nonestrogenic disruption of otolith development by bisphenol A in zebrafish. Environ. Sci. Technol. 57, 16190–16205 (2023).Article 
ADS 
PubMed 

Google Scholar 
Ji, X. et al. Maternal bisphenol B exposure and mammary gland development of offspring: A time-series analysis. Environ. Health 1, 278–290 (2023).Article 

Google Scholar 
Han, X. et al. Occurrence of chlorinated derivatives of bisphenol S in paper products and their potential health risks through dermal exposure. Environ. Sci. Technol. 58, 3966–3973 (2024).Article 
ADS 
PubMed 

Google Scholar 
Yang, Y. et al. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/HOF heterojunction for the detection of bisphenol A. Food Chem. 443, 138499 (2024).Article 
PubMed 

Google Scholar 
Li, Y. et al. Computational explorations of the interaction between laccase and bisphenol A: Influence of surfactant and different organic solvents. SAR QSAR Environ. Res. 34, 963–981 (2023).Article 
PubMed 

Google Scholar 
Chen, D. et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 50, 5438–5453 (2016).Article 
ADS 
PubMed 

Google Scholar 
Cheng, C. et al. Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 8, 17784–17792 (2016).Article 
PubMed 

Google Scholar 
Luo, D. et al. Selenium deficiency exacerbated Bisphenol A-induced intestinal toxicity in chickens: Apoptosis and cell cycle arrest mediated by ROS/P53. Sci. Total Environ. 913, 169730 (2024).Article 
PubMed 

Google Scholar 
Thukkaram, M. P. et al. Titanium carbide MXene and V2O5 composite-based electrochemical sensor for detection of bisphenol A. Microchem. J. 193, 109004 (2023).Article 

Google Scholar 
Wooding, S. et al. Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem. Senses 35, 685–692 (2010).Article 
PubMed 

Google Scholar 
Panduang, T., Phucharoenrak, P., Karnpanit, W. & Trachootham, D. Cooking methods for preserving isothiocyanates and reducing goitrin in brassica vegetables. Foods 12, 1–18 (2023).Article 

Google Scholar 
Faiman, C., Ryan, R. J. & Eichel, H. J. Effect of goitrin analogues and related compounds on the rat thyroid gland. Endocrinology 81, 88–92 (1967).Article 
PubMed 

Google Scholar 
Kalath, H. et al. In-silico studies of Brassica oleracea active compounds and their role in thyroid peroxidase activity. J. Biomol. Struct. Dyn. 2023, 1–17 (2023).Article 

Google Scholar 
Bertin, F. R., Frank, N., Breuhaus, B. A., Schott, H. C. & Kritchevsky, J. E. Diagnosis and management of thyroid disorders and thyroid hormone supplementation in adult horses and foals. Equi. Veterin. J. 56(2), 243–252 (2024).Bhadra, B. N., Lee, J. K., Cho, C.-W. & Jhung, S. H. Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 343, 225–234 (2018).Article 

Google Scholar 
Liu, Q. et al. Metal-organic frameworks based fluorescent sensor array for discrimination of flavonoids. Talanta 203, 248–254 (2019).Article 
PubMed 

Google Scholar 
Tan, Q. et al. Layered double hydroxide@ metal-organic framework hybrids for extraction of indole-3-carbinol from cruciferous vegetables. Front. Nutr. 9, 841257 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ghahari, A. & Raissi, H. Design of a hydroxy channel based on the selectivity of water permeation via ions exclusion. npj Clean Water https://doi.org/10.1038/s41545-022-00210-0 (2023).Article 

Google Scholar 
Ghahari, A., Raissi, H., Pasban, S. & Farzad, F. Proposing two-dimensional covalent organic frameworks material for the capture of phenol molecules from wastewaters. Npj Clean Water 5, 28 (2022).Article 

Google Scholar 
Hashemzadeh, H. & Raissi, H. Understanding dual delivery of doxorubicin and paclitaxel with boron nitride and phosphorene nanosheets as highly efficient drug delivery systems. J. Biomol. Struct. Dyn. 39, 1–6 (2020).
Google Scholar 
Wonglakhon, T. & Zahn, D. Interaction potentials for modelling GaN precipitation and solid state polymorphism. J. Phys. Condens. Matter 32, 205401 (2020).Article 
ADS 
PubMed 

Google Scholar 
Bonomi, M. et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972 (2009).Article 
ADS 

Google Scholar 
Kutzner, C. et al. More bang for your buck: Improved use of GPU nodes for GROMACS 2018. J. Comput. Chem. 40, 2418–2431 (2019).Article 
PubMed 

Google Scholar 
Ghahari, A. & Raissi, H. Architectural design of anode materials for superior alkali-ion (Li/Na/K) batteries storage. Sci. Rep. 14, 3959 (2024).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Berstis, L., Elder, T., Dixon, R., Crowley, M. & Beckham, G. T. Coupling of flavonoid initiation sites with monolignols studied by density functional theory. ACS Sustain. Chem. Eng. 9, 1518–1528 (2021).Article 

Google Scholar 
Rossi, M., Rickles, L. F. & Halpin, W. A. The crystal and molecular structure of quercetin: A biologically active and naturally occurring flavonoid. Bioorg. Chem. 14, 55–69 (1986).Article 

Google Scholar 
Jia, Y. et al. Comparative study of binding interactions between different dietary flavonoids and soybean β-conglycinin and glycinin: Impact on structure and function of the proteins. Food Res. Int. 161, 111784 (2022).Article 
PubMed 

Google Scholar 
Telcs, A. Einstein relation. Art Random Walks 83–93 (2006).Vogel, D. J., Nenoff, T. M. & Rimsza, J. M. Tuned hydrogen bonding in rare-earth metal-organic frameworks for design of optical and electronic properties: An exemplar study of Y-2, 5-dihydroxyterephthalic acid. ACS Appl. Mater. Interfaces 12, 4531–4539 (2020).Article 
PubMed 

Google Scholar 
Suraweera, N. S., Xiong, R., Luna, J. P., Nicholson, D. M. & Keffer, D. J. On the relationship between the structure of metal–organic frameworks and the adsorption and diffusion of hydrogen. Mol. Simul. 37, 621–639 (2011).Article 

Google Scholar 
Rieth, A. J., Hunter, K. M., Dincua, M. & Paesani, F. Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites. Nat. Commun. 10, 4771 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ghahari, A., Raissi, H. & Farzad, F. Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. J. Taiwan Inst. Chem. Eng. 125, 15–22 (2021).Article 

Google Scholar 
Wang, S., Zhou, G., Sun, Y. & Huang, L. A computational study of water in UiO-66 Zr-MOFs: Diffusion, hydrogen bonding network, and confinement effect. AIChE J. 67, e17035 (2021).Article 
ADS 

Google Scholar 
Zhu, Z.-H., Wang, H.-L., Zou, H.-H. & Liang, F.-P. Metal hydrogen-bonded organic frameworks: Structure and performance. Dalton Trans. 49, 10708–10723 (2020).Article 
PubMed 

Google Scholar 
Gandini, E., Dapiaggi, F., Oliva, F., Pieraccini, S. & Sironi, M. Well-tempered metadynamics based method to evaluate universal peptidomimetics. Chem. Phys. Lett. 706, 729–735 (2018).Article 
ADS 

Google Scholar 
Bussi, G. & Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2, 200–212 (2020).Article 

Google Scholar 
Haghi, A., Raissi, H., Hashemzadeh, H. & Farzad, F. Designing a high-performance smart drug delivery system for the synergetic co-absorption of DOX and EGCG on ZIF-8. RSC Adv. 10, 44533–44544 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Farzad, F. & Hashemzadeh, H. Probing the effect of polyethene glycol on the adsorption mechanisms of Gem on the hexagonal boron nitride as a highly efficient polymer-based drug delivery system: DFT, classical MD and well-tempered metadynamics simulations. J. Mol. Graph. Model. 98, 107613 (2020).Article 
PubMed 

Google Scholar 
Yoosefian, M. A high efficient nanostructured filter based on functionalized carbon nanotube to reduce the tobacco-specific nitrosamines. NNK Appl. Surf. Sci. 434, 134–141 (2018).Article 
ADS 

Google Scholar 
Kamel, M., Raissi, H. & Morsali, A. Theoretical study of solvent and co-solvent effects on the interaction of flutamide anticancer drug with carbon nanotube as a drug delivery system. J. Mol. Liq. 248, 490–500 (2017).Article 

Google Scholar 
Rangel-Peña, U. J. et al. Conceptual DFT, machine learning and molecular docking as tools for predicting LD50 toxicity of organothiophosphates. J. Mol. Model. 29, 217 (2023).Article 
PubMed 

Google Scholar 
Lefebvre, C., Klein, J., Khartabil, H., Boisson, J.-C. & Hénon, E. IGMPlot: A program to identify, characterize, and quantify molecular interactions. J. Comput. Chem. 44, 1750–1766 (2023).Article 
PubMed 

Google Scholar 
Mondal, S. β-d-Glucopyranose—silver+ (1:1) complex as a small gas molecule scavenger. J. Comput. Chem. 45, 1434–1443 (2024).Article 
PubMed 

Google Scholar 
Rozas, I., Alkorta, I. & Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 122, 11154–11161 (2000).Article 

Google Scholar 
Saidj, M. et al. Molecular structure, experimental and theoretical vibrational spectroscopy,(HOMO-LUMO, NBO) investigation,(RDG, AIM) analysis,(MEP, NLO) study and molecular docking of ethyl-2-{[4-Ethyl-5-(Quinolin-8-yloxyMethyl)-4H-1, 2, 4-Triazol-3-yl] Sulfanyl} acetate. Polycycl. Aromat. Compd. 43, 2152–2176 (2023).Article 

Google Scholar 
Contreras-Garcia, J., Yang, W. & Johnson, E. R. Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions. J. Phys. Chem. A 115, 12983–12990 (2011).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles