A hybrid FeOx/CoOx/Pt ternary nanocatalyst for augmented catalysis of formic acid electro-oxidation

Wang, C. et al. 3D hydroxylated Ti3C2Tx MXene nanonet architecture supported Pt catalysts for efficient hydrogen evolution. Surf. Interfaces 42, 103426. https://doi.org/10.1016/j.surfin.2023.103426 (2023).Article 
CAS 

Google Scholar 
Wang, C., Qian, C., Hu, T. & Yang, X. Enhancing solar-driven photoelectrocatalytic efficiency of Au nanoparticles with defect-rich hydrogenated TiO2 toward ethanol oxidation. Chem. Eng. J. 445, 136562. https://doi.org/10.1016/j.cej.2022.136562 (2022).Article 
CAS 

Google Scholar 
Yadav, N. et al. Non-functionalized Au nanoparticles can act as high-performing humidity sensor. J. Mater. Sci. Mater. Electron. 31, 17843–17854. https://doi.org/10.1007/s10854-020-04338-y (2020).Article 
CAS 

Google Scholar 
Abdelkareem, M. A. et al. Fuel cells for carbon capture applications. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144243 (2020).Article 
PubMed 

Google Scholar 
Elsaid, K. et al. Direct alcohol fuel cells: Assessment of the fuel’s safety and health aspects. Int. J. Hydrog. Energy https://doi.org/10.1016/j.ijhydene.2020.12.009 (2021).Article 

Google Scholar 
Su, X., Pan, Z., An, L. & Yu, Y. Mathematical modeling of direct formate fuel cells incorporating the effect of ion migration. Int. J. Heat Mass Transf. 164, 120629. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120629 (2021).Article 
CAS 

Google Scholar 
Altan, O. & Metin, Ö. Boosting formic acid dehydrogenation via the design of a Z-scheme heterojunction photocatalyst: the case of graphitic carbon nitride/Ag/Ag3PO4–AgPd quaternary nanocomposites. Appl. Surf. Sci. 535, 147740. https://doi.org/10.1016/j.apsusc.2020.147740 (2021).Article 
CAS 

Google Scholar 
Eberle, U., Felderhoff, M. & Schueth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630. https://doi.org/10.1002/anie.200806293 (2009).Article 
CAS 

Google Scholar 
Zhong, H. et al. Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts. Adv. Sustain. Syst. 2, 1700161. https://doi.org/10.1002/adsu.201700161 (2018).Article 
CAS 

Google Scholar 
Lillo-Ródenas, M. A., Guo, Z. X., Aguey-Zinsou, K. F., Cazorla-Amorós, D. & Linares-Solano, A. Effects of different carbon materials on MgH2 decomposition. Carbon 46, 126–137. https://doi.org/10.1016/j.carbon.2007.10.033 (2008).Article 
CAS 

Google Scholar 
DEMİRCİ, Ü. B. Sodium borohydride for the near-future energy: A “rough diamond” for Turkey. Turk. J. Chem. 42, 193–220. https://doi.org/10.3906/kim-1712-6 (2018).Article 
CAS 

Google Scholar 
Singh, S. K. & Xu, Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J. Am. Chem. Soc. 131, 18032–18033. https://doi.org/10.1021/ja908037t (2009).Article 
CAS 
PubMed 

Google Scholar 
Afif, A. et al. Ammonia-fed fuel cells: a comprehensive review. Renew. Sust. Energ. Rev. 60, 822–835. https://doi.org/10.1016/j.rser.2016.01.120 (2016).Article 
CAS 

Google Scholar 
Kahri, H., Sevim, M. & Metin, Ö. Enhanced catalytic activity of monodispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight. Nano Res. 10, 1627–1640. https://doi.org/10.1007/s12274-016-1345-x (2017).Article 
CAS 

Google Scholar 
Grad, O. et al. Reduced graphene oxide modified with noble metal nanoparticles for formic acid dehydrogenation. Catal. Today https://doi.org/10.1016/j.cattod.2020.08.009 (2020).Article 

Google Scholar 
Loges, B., Boddien, A., Gärtner, F., Junge, H. & Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: Useful hydrogen storage materials. Top. Catal. 53, 902–914. https://doi.org/10.1007/s11244-010-9522-8 (2010).Article 
CAS 

Google Scholar 
Singh, A. K., Singh, S. & Kumar, A. Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system. Catal. Sci. Technol. 6, 12–40. https://doi.org/10.1039/C5CY01276G (2016).Article 

Google Scholar 
Jiang, H. L., Singh, S. K., Yan, J. M., Zhang, X. B. & Xu, Q. Liquid-phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem Chem. Sust. Energy Mat. 3, 541–549. https://doi.org/10.1002/cssc.201000023 (2010).Article 
CAS 

Google Scholar 
Al-Akraa, I. M. et al. Tuning the activity and stability of platinum nanoparticles toward the catalysis of the formic acid electrooxidation. J. Electrochem. Sci. 15(6), 5597–5608. https://doi.org/10.20964/2020.06.81 (2020).Article 
CAS 

Google Scholar 
Ertürk, A. S., Meng, X., Zhang, Y. & Elmacı, G. Focused microwave-assisted synthesis of activated XC-72R supported PdBi nanocatalyst for the enhanced electrocatalytic performance in formic acid oxidation. Int. J. Hydrog. Energy 51, 837–847. https://doi.org/10.1016/j.ijhydene.2023.07.082 (2024).Article 
ADS 

Google Scholar 
Al-Akraa, I. M., Asal, Y. M. & Mohammad, A. M. Surface engineering of Pt surfaces with Au and cobalt oxide nanostructures for enhanced formic acid electro-oxidation. Arab. J. Chem. 15, 103965. https://doi.org/10.1016/j.arabjc.2022.103965 (2022).Article 
CAS 

Google Scholar 
Lee, C. W., Cho, N. H., Yang, K. D. & Nam, K. T. Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 4, 2130–2136. https://doi.org/10.1002/celc.201700335 (2017).Article 
CAS 

Google Scholar 
Zhu, Y., Ha, S. Y. & Masel, R. I. High power density direct formic acid fuel cells. J. Power Sources 130, 8–14. https://doi.org/10.1016/j.jpowsour.2003.11.051 (2004).Article 
ADS 
CAS 

Google Scholar 
Farrag, H. H., Al-Akraa, I. M., Allam, N. K. & Mohammad, A. M. Amendment of palladium nanocubes with iron oxide nanowires for boosted formic acid electro−oxidation. Arab. J. Chem. 16, 104524. https://doi.org/10.1016/j.arabjc.2022.104524 (2023).Article 
CAS 

Google Scholar 
Xu, J., Zhao, T. & Liang, Z. Carbon supported platinum–gold alloy catalyst for direct formic acid fuel cells. J. Power Sources 185, 857–861. https://doi.org/10.1016/j.jpowsour.2008.09.039 (2008).Article 
ADS 
CAS 

Google Scholar 
Betts, A., Briega-Martos, V., Cuesta, A. & Herrero, E. Adsorbed formate is the last common intermediate in the dual-path mechanism of the electrooxidation of formic acid. ACS Catal. 10, 8120–8130. https://doi.org/10.1021/acscatal.0c00791 (2020).Article 
CAS 

Google Scholar 
Ge, Z.-X. et al. Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting. J. Energy Chem. 77, 209–216. https://doi.org/10.1016/j.jechem.2022.10.020 (2023).Article 
CAS 

Google Scholar 
Zhang, X., Sun, Y., Liu, Q., Guo, J. & Zhang, X. FePt nanoalloys on N-doped graphene paper as integrated electrode towards efficient formic acid electrooxidation. J. Appl. Electrochem. 48, 95–103. https://doi.org/10.1007/s10800-017-1137-3 (2018).Article 
CAS 

Google Scholar 
Yang, M. et al. Modulation engineering of in-situ cathodic activation of FePx based on W-incorporation for the hydrogen evolution. Nanoscale 12, 12364–12373. https://doi.org/10.1039/D0NR02661A (2020).Article 
CAS 
PubMed 

Google Scholar 
El-Deab, M. S., Mohammad, A. M., El-Nagar, G. A. & El-Anadouli, B. E. Impurities contributing to catalysis: Enhanced electro-oxidation of formic acid at Pt/GC electrodes in the presence of vinyl acetate. J. Phys. Chem. C 118, 22457–22464. https://doi.org/10.1021/jp507240r (2014).Article 
CAS 

Google Scholar 
Capon, A. & Parsons, R. The oxidation of formic acid at noble metal electrodes part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. 45, 205–231. https://doi.org/10.1016/S0022-0728(73)80158-5 (1973).Article 
CAS 

Google Scholar 
Osawa, M. et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew. Chem. Int. Ed. 50, 1159–1163. https://doi.org/10.1002/anie.201004782 (2011).Article 
CAS 

Google Scholar 
Montero, M. A., de Chialvo, M. R. G. & Chialvo, A. C. Formic acid electrooxidation on palladium nanostructured electrodes in concentrated solutions. Electrochim. Acta 475, 143580. https://doi.org/10.1016/j.electacta.2023.143580 (2024).Article 
CAS 

Google Scholar 
Krstajić Pajić, M. N. et al. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method. Appl. Catal. B Environ. 243, 585–593. https://doi.org/10.1016/j.apcatb.2018.10.064 (2019).Article 
CAS 

Google Scholar 
Miki, A., Ye, S. & Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun. (Cambridge, U. K.) 14, 1500–1501. https://doi.org/10.1039/B203392E (2002).Article 

Google Scholar 
Chen, Y.-X., Heinen, M., Jusys, Z. & Behm, R. J. Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation. ChemPhysChem 8, 380–385. https://doi.org/10.1002/cphc.200600520 (2007).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. X., Heinen, M., Jusys, Z. & Behm, R. J. Bridge-bonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode?. Langmuir 22, 10399–10408. https://doi.org/10.1021/la060928q (2006).Article 
CAS 
PubMed 

Google Scholar 
Mei, D., He, Z.-D., Jiang, D. C., Cai, J. & Chen, Y.-X. Modeling of potential oscillation during galvanostatic electrooxidation of formic acid at platinum electrode. J. Phys. Chem. C 118, 6335–6343. https://doi.org/10.1021/jp500285j (2014).Article 
CAS 

Google Scholar 
Gharib, A. & Arab, A. Improved formic acid oxidation using electrodeposited Pd–Cd electrocatalysts in sulfuric acid solution. Int. J. Hydrog. Energy 46, 3865–3875. https://doi.org/10.1016/j.ijhydene.2020.10.202 (2020).Article 
CAS 

Google Scholar 
Chen, X. & Koper, M. T. M. Mass-transport-limited oxidation of formic acid on a PdMLPt(100) electrode in perchloric acid. Electrochem. commun. 82, 155–158. https://doi.org/10.1016/j.elecom.2017.08.002 (2017).Article 
CAS 

Google Scholar 
Zhang, M. et al. Metal-support interaction promoted multifunctional electrocatalysis on PtCo/NC with ultralow Pt loading for oxygen reduction reaction and zinc–air battery. Appl. Catal. B: Environ. 337, 122976. https://doi.org/10.1016/j.apcatb.2023.122976 (2023).Article 
CAS 

Google Scholar 
López-Suárez, F. E., Bueno-López, A., Eguiluz, K. I. B. & Salazar-Banda, G. R. Pt–Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: Effect of the precursor addition order. J. Power Sources 268, 225–232. https://doi.org/10.1016/j.jpowsour.2014.06.042 (2014).Article 
ADS 
CAS 

Google Scholar 
Lee, H., Kim, Y. J., Sohn, Y. & Rhee, C. K. Pt deposits on Bi-modified Pt electrodes of nanoparticle and disk: A contrasting behavior of formic acid oxidation. J. Electrochem. Sci. Technol. 12, 323–329. https://doi.org/10.33961/jecst.2021.00178 (2021).Article 
CAS 

Google Scholar 
Wen, X., Yin, S., Yin, H. & Ding, Y. A displacement dealloying route to dilute nanoporous PtAu alloys for highly active formic acid electro-oxidation. Electrochim. Acta 373, 137884. https://doi.org/10.1016/j.electacta.2021.137884 (2021).Article 
CAS 

Google Scholar 
Kim, J. et al. Atomic Pt clusters on Au dendrite for formic acid oxidation. Chem. Eng. J. (Lausanne) 451, 138664. https://doi.org/10.1016/j.cej.2022.138664 (2023).Article 
CAS 

Google Scholar 
Al-Akraa, I. M., Asal, Y. M. & Mohammad, A. M. Facile synthesis of a tailored-designed AU/PT nanoanode for enhanced formic acid, methanol, and ethylene glycol electrooxidation. J. Nanomater. https://doi.org/10.1155/2019/2784708 (2019).Article 

Google Scholar 
Habibi, B. & Delnavaz, N. Carbon–ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for oxidation of formic acid. Int. J. Hydrog. Energy 36, 9581–9590. https://doi.org/10.1016/j.ijhydene.2011.05.062 (2011).Article 
ADS 
CAS 

Google Scholar 
Chi, N., Chan, K.-Y. & Phillips, D. L. Electrocatalytic oxidation of formic acid by Pt/Co nanoparticles. Catal. Lett. 71, 21–26. https://doi.org/10.1023/A:1016639905093 (2001).Article 
CAS 

Google Scholar 
Chen, W., Kim, J., Sun, S. & Chen, S. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Langmuir 23, 11303–11310. https://doi.org/10.1021/la7016648 (2007).Article 
CAS 
PubMed 

Google Scholar 
Al-Akraa, I. M., Salama, A. E., Asal, Y. M. & Mohammad, A. M. Boosted performance of NiOx/Pt nanocatalyst for the electro-oxidation of formic acid: A substrate’s functionalization with multi-walled carbon nanotubes. Arab. J. Chem. 14, 103383. https://doi.org/10.1016/j.arabjc.2021.103383 (2021).Article 
CAS 

Google Scholar 
El-Nagar G. A., Mohammad A. M., El-Deab M. S. and El-Anadouli B. E., Electrocatalysis of formic acid electro-oxidation at platinum nanoparticles modified surfaces with nickel and cobalt oxides nanostructures, in Progress in Clean Energy, Volume 1: Analysis and Modeling, I. Dincer et al. (eds.), 577-594. https://doi.org/10.1007/978-3-319-16709-1_42 (Springer International Publishing Switzerland, 2015).Book 

Google Scholar 
Kumar, A., Kumar, A., Jana, S. & Prakash, R. Electro-oxidation of formic acid on composites from polycarbazole and WO3. Mater. Chem. Phys. 282, 125958. https://doi.org/10.1016/j.matchemphys.2022.125958 (2022).Article 
CAS 

Google Scholar 
El-Deab, M. S. Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays. J. Adv. Res. 1, 87–93. https://doi.org/10.1016/j.jare.2010.01.001 (2010).Article 

Google Scholar 
Al-Akraa, I. M., Mamdouh, M. M., Asal, Y. M. & Mohammad, A. M. A competent MWCNT-grafted MnOx/Pt nanoanode for the direct formic acid fuel cells. J. Chem. 2022, 3762138. https://doi.org/10.1155/2022/3762138 (2022).Article 
CAS 

Google Scholar 
Asal, Y. M., Al-Akraa, I. M., Mohammad, A. M. & El-Deab, M. S. A competent simultaneously co-electrodeposited Pt–MnOx nanocatalyst for enhanced formic acid electro-oxidation. J. Taiwan Inst. Chem. Eng. 96, 169–175. https://doi.org/10.1016/j.jtice.2018.10.026 (2019).Article 
CAS 

Google Scholar 
Al-Qodami, B. A. et al. Bifunctional tailoring of platinum surfaces with earth abundant iron oxide nanowires for boosted formic acid electro-oxidation. J. Nanotechnol. 2018, 4657040 (2018).Article 

Google Scholar 
Al-Qodami, B. A. et al. Surface engineering of nanotubular ferric oxyhydroxide “goethite” on platinum anodes for durable formic acid fuel cells. Int. J. Hydrog. Energy 47, 264–275. https://doi.org/10.1016/j.ijhydene.2021.10.037 (2022).Article 
ADS 
CAS 

Google Scholar 
Al-Qodami, B. A. et al. Tailor-designed nanowire-structured iron and nickel oxides on platinum catalyst for formic acid electro-oxidation. RSC Adv. 12, 20395–20402. https://doi.org/10.1039/D2RA03386K (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Al-Qodami, B. A. et al. Boosted formic acid electro-oxidation on platinum nanoparticles and “mixed-valence” iron and nickel oxides. RSC Adv. 13, 20799–20809. https://doi.org/10.1039/D3RA03350C (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Asal, Y. M.,  Al-Akraa, I. M., Mohammad, A. M. & El-Deab, M. S. Design of efficient bimetallic Pt-Au nanoparticle-based anodes for direct formic acid fuel cells. Int. J. Hydrog. Energy 44, 3615-3624. https://doi.org/10.1016/j.ijhydene.2018.12.086 (2019).Book 

Google Scholar 
Chen, L. et al. Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 6, 5848–5855. https://doi.org/10.1039/c7ta11051k (2018).Article 
ADS 
CAS 

Google Scholar 
El-Deab, M. S., Awad, M. I., Mohammad, A. M. & Ohsaka, T. Enhanced water electrolysis: Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem. Commun. 9, 2082–2087. https://doi.org/10.1016/j.elecom.2007.06.011 (2007).Article 
CAS 

Google Scholar 
Chen, Y.-X., Chen, S.-P., Chen, Q.-S., Zhou, Z.-Y. & Sun, S.-G. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction. Electrochim. Acta 53, 6938–6943. https://doi.org/10.1016/j.electacta.2008.02.024 (2008).Article 
CAS 

Google Scholar 
Hassan, K., Hathoot, A., Maher, R. & Azzem, M. A. Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1, 8-diaminonaphthalene film in alkaline medium. RSC Adv. 8, 15417–15426. https://doi.org/10.1039/C7RA13694C (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, Z. & Li, S. A novel photoelectrochemical glucose sensor based on graphene-CdS nanocomposites decorated with CoOx nanosheets. Int. J. Electrochem. Sci 14, 11445–11455. https://doi.org/10.20964/2019.12.71 (2019).Article 
CAS 

Google Scholar 
Ashrafi, M., Salimi, A. & Arabzadeh, A. Photoelectrocatalytic enzymeless detection of glucose at reduced graphene oxide/CdS nanocomposite decorated with finny ball CoOx nanostructures. J. Electroanal. Chem. 783, 233–241. https://doi.org/10.1016/j.jelechem.2016.11 (2016).Article 
CAS 

Google Scholar 
Yang, Q., Bi, R., Yung, K.-C. & Pecht, M. Electrochemically reduced graphene oxides/nanostructured iron oxides as binder-free electrodes for supercapacitors. Electrochim. Acta 231, 125–134. https://doi.org/10.1016/j.electacta.2017.02.045 (2017).Article 
ADS 
CAS 

Google Scholar 
Salimi, A., Hallaj, R., Soltanian, S. & Mamkhezri, H. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta 594, 24–31. https://doi.org/10.1016/j.aca.2007.05.010 (2007).Article 
CAS 
PubMed 

Google Scholar 
Mahdavi-Shakib, A. et al. The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat. Catal. 6, 710–719. https://doi.org/10.1038/s41929-023-00996-3 (2023).Article 
CAS 

Google Scholar 
Nugroho, A. & Kim, J. Effect of KOH on the continuous synthesis of cobalt oxide and manganese oxide nanoparticles in supercritical water. J. Ind. Eng. Chem. 20, 4443–4446. https://doi.org/10.1016/j.jiec.2014.02.014 (2014).Article 
CAS 

Google Scholar 
Shi, H., Liao, F., Zhu, W., Shao, C. & Shao, M. Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. Int. J. Hydrog. Energy 45, 16071–16079. https://doi.org/10.1016/j.ijhydene.2020.04.003 (2020).Article 
ADS 
CAS 

Google Scholar 
Pei, A. et al. Ultra-low Au decorated PtNi alloy nanoparticles on carbon for high-efficiency electro-oxidation of methanol and formic acid. Int. J. Hydrog. Energy 45, 22893–22905. https://doi.org/10.1016/j.ijhydene.2020.06.164 (2020).Article 
ADS 
CAS 

Google Scholar 
Asal, Y. M., Mohammad, A. M., Abd El Rehim, S. S. & Al-Akraa, I. M. Synergistic enhancement of formic acid electro-oxidation on PtxCuy co-electrodeposited binary catalysts. J. Saudi Chem. Soc. 26, 101437. https://doi.org/10.1016/j.jscs.2022.101437 (2022).Article 
CAS 

Google Scholar 
Al-Akraa, I. M., Asal, Y. M. & Darwish, S. A. A. A simple and effective way to overcome carbon monoxide poisoning of platinum surfaces in direct formic acid fuel cells. Int. J. Electrochem. Sci. 14, 8267–8275. https://doi.org/10.20964/2019.08.100 (2019).Article 
CAS 

Google Scholar 
Al-Akraa, I. M. & Mohammad, A. M. A spin-coated TiOx/Pt nanolayered anodic catalyst for the direct formic acid fuel cells. Arab. J. Chem. 13, 4703–4711. https://doi.org/10.1016/j.arabjc.2019.10.013 (2020).Article 
CAS 

Google Scholar 
Sun, Y. et al. Segmented Au/PtCo heterojunction nanowires for efficient formic acid oxidation catalysis. Fundam. Res. 1, 453–460. https://doi.org/10.1016/j.fmre.2021.06.016 (2021).Article 
CAS 

Google Scholar 
Asal, Y. M., Mohammad, A. M., Abd El Rehim, S. S. & Al-Akraa, I. M. Co-electrodeposited PtPd anodic catalyst for the direct formic acid fuel cells. Energy Rep. 8, 560–564. https://doi.org/10.1016/j.egyr.2022.10.232 (2022).Article 

Google Scholar 
Chen, W. & Chen, S. Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation. J. Mater. Chem. 21, 9169–9178. https://doi.org/10.1039/C1JM00077B (2011).Article 
CAS 

Google Scholar 
Hsing, I.-M., Wang, X. & Leng, Y.-J. Electrochemical impedance studies of methanol electro-oxidation on Pt/C thin film electrode. J. Electrochem. Soc. 149, A615-A621. https://doi.org/10.1149/1.1467940 (2002).Article 
CAS 

Google Scholar 
Themsirimongkon, S., Sarakonsri, T., Lapanantnoppakhun, S., Jakmunee, J. & Saipanya, S. Carbon nanotube-supported Pt-alloyed metal anode catalysts for methanol and ethanol oxidation. Int. J. Hydrog. Energy 44, 30719–30731. https://doi.org/10.1016/j.ijhydene.2018.04.145 (2019).Article 
ADS 
CAS 

Google Scholar 
Maturost, S. et al. The effect of CuO on a Pt−based catalyst for oxidation in a low-temperature fuel cell. Int. J. Hydrog. Energy 46, 5999–6013. https://doi.org/10.1016/j.ijhydene.2020.08.154 (2021).Article 
ADS 
CAS 

Google Scholar 
Ai, M. Activities for the decomposition of formic acid and the acid-base properties of metal oxide catalysts. J. Catal. 50, 291–300. https://doi.org/10.1016/0021-9517(77)90038-0 (1977).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles