Lipidomic study of kidney in a mouse model with urine flow obstruction

Ntambi, J. M. Lipid Signaling and Metabolism (Academic Press, 2020).
Google Scholar 
Zhao, Y.-Y., Vaziri, N. D. & Lin, R.-C. Lipidomics: new insight into kidney disease. Adv. Clin. Chem. 68, 153–175 (2015).Article 
CAS 
PubMed 

Google Scholar 
Afshinnia, F. et al. Lipidomics and biomarker discovery in kidney disease. In Seminars in Nephrology 127–141 (Elsevier, 2018).
Google Scholar 
Quehenberger, O. & Dennis, E. A. The human plasma lipidome. N. Engl. J. Med. 365, 1812–1823 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Afshinnia, F. et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 1, 256–268 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, H. et al. Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. J. Proteome Res. 16, 1566–1578 (2017).Article 
CAS 
PubMed 

Google Scholar 
Xu, W. Astragaloside IV ameliorates renal fibrosis via the inhibition of mitogen-activated protein kinases and antiapoptosis in vivo and in vitro. J. Pharmacol. Exp. Ther. 350(3), 552–62. https://doi.org/10.1124/jpet.114.214205. Epub 2014 Jun 20. PMID:24951279. (2014).Chevalier, R. L., Thornhill, B. A., Forbes, M. S. & Kiley, S. C. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol. 25, 687–697 (2010).Article 
PubMed 

Google Scholar 
Klahr, S. & Morrissey, J. Comparative effects of ACE inhibition and angiotensin II receptor blockade in the prevention of renal damage. Kidney Int. 62, S23–S26. https://doi.org/10.1046/j.1523-1755.62.s82.5.x (2002).Article 

Google Scholar 
Warady, B. A. & Chadha, V. Chronic kidney disease in children: The global perspective. Pediatr. Nephrol. 22, 1999–2009 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Martínez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E. & Pedraza-Chaverri, J. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9, 141 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Manucha, W. Biochemical-molecular markers in unilateral ureteral obstruction. Biocell 31, 1–12 (2007).Article 
CAS 
PubMed 

Google Scholar 
Aranda-Rivera, A. K., Cruz-Gregorio, A., Aparicio-Trejo, O. E., Ortega-Lozano, A. J. & Pedraza-Chaverri, J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Rad. Biol. Med. 172, 65–81 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ucero, A. C. et al. Unilateral ureteral obstruction: Beyond obstruction. Int. Urol. Nephrol. 46, 765–776 (2014).Article 
PubMed 

Google Scholar 
Xia, Z.-E., Xi, J.-L. & Shi, L. 3, 3′-Diindolylmethane ameliorates renal fibrosis through the inhibition of renal fibroblast activation in vivo and in vitro. Renal Fail. 40, 447–454 (2018).Article 
CAS 

Google Scholar 
Banerjee, S. et al. Early detection of unilateral ureteral obstruction by desorption electrospray ionization mass spectrometry. Sci. Rep. 9, 1–10 (2019).Article 

Google Scholar 
Agrawal, S., Zaritsky, J. J., Fornoni, A. & Smoyer, W. E. Dyslipidaemia in nephrotic syndrome: Mechanisms and treatment. Nat. Rev. Nephrol. 14, 57–70 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bulbul, M. C. et al. Disorders of lipid metabolism in chronic kidney disease. Blood Purif. 46, 144–152 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rovin, B. H., Harris, K. P., Morrison, A., Klahr, S. & Schreiner, G. F. Renal cortical release of a specific macrophage chemoattractant in response to ureteral obstruction. Laboratory Invest. A J. Tech. Methods Pathol. 63, 213–220 (1990).CAS 

Google Scholar 
Masum, M. A., Ichii, O., Elewa, Y. H. A. & Kon, Y. Podocyte injury through interaction between tlr8 and its endogenous ligand miR-21 in obstructed and its collateral kidney. Front. Immunol. 11, 606488 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Masum, M. A., Ichii, O., Elewa, Y. H. A., Nakamura, T. & Kon, Y. Local CD34-positive capillaries decrease in mouse models of kidney disease associating with the severity of glomerular and tubulointerstitial lesions. BMC Nephrol. 18, 1–12 (2017).Article 

Google Scholar 
Gowda, S. G. B., Sasaki, Y., Hasegawa, E., Chiba, H. & Hui, S. P. Lipid fingerprinting of yellow mealworm Tenebrio molitor by untargeted liquid chromatography-mass spectrometry. J. Insects Food Feed 8, 157–168 (2022).Article 

Google Scholar 
Gowda, S. G. B. et al. Docosahexaenoic acid esters of hydroxy fatty acid is a novel activator of NRF2. Int. J. Mol. Sci. 22, 7598 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Mallela, S. K., Merscher, S. & Fornoni, A. Implications of sphingolipid metabolites in kidney diseases. Int. J. Mol. Sci. 23, 4244 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boini, K. M. et al. Acid sphingomyelinase gene deficiency ameliorates the hyperhomocysteinemia-induced glomerular injury in mice. Am. J. Pathol. 179, 2210–2219 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shiffman, D. et al. A gene variant in CERS2 is associated with rate of increase in albuminuria in patients with diabetes from ONTARGET and TRANSCEND. PLoS ONE 9, e106631 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Summers, S. A., Garza, L. A., Zhou, H. & Birnbaum, M. J. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol. 18, 5457–5464 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Woo, C.-Y. et al. Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy. Diabetes Metab. J. 44, 581–591 (2020).Article 
PubMed 

Google Scholar 
Chen, L. et al. Unilateral ureteral obstruction causes gut microbial dysbiosis and metabolome disorders contributing to tubulointerstitial fibrosis. Exp. Mol. Med. 51, 1–18 (2019).PubMed 
PubMed Central 

Google Scholar 
Malik, R. K., Thornhill, B. A., Chang, A. Y., Kiley, S. C. & Chevalier, R. L. Renal apoptosis parallels ceramide content after prolonged ureteral obstruction in the neonatal rat. Am. J. Physiol.-Renal Physiol. 281(1), F56–F61. https://doi.org/10.1152/ajprenal.2001.281.1.F56 (2001).Article 
CAS 
PubMed 

Google Scholar 
Morrissey, J., Windus, D., Schwab, S., Tannenbaum, J. & Klahr, S. Ureteral occlusion decreases phospholipid and cholesterol of renal tubular membranes. Am. J. Physiol.-Renal Physiol. 250, F136–F143 (1986).Article 
CAS 

Google Scholar 
Eckes, T. et al. Consistent alteration of chain length-specific ceramides in human and mouse fibrotic kidneys. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1866(1), 158821. https://doi.org/10.1016/j.bbalip.2020.158821 (2021).Article 
MathSciNet 
CAS 

Google Scholar 
Ridgway, N. D., Lagace, T. A., Cook, H. W. & Byers, D. M. Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization. J. Biol. Chem. 273, 31621–31628 (1998).Article 
CAS 
PubMed 

Google Scholar 
Slotte, J. P. & Bierman, E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem. J. 250, 653–658 (1988).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z.-X. et al. Evaluation of serum free fatty acids in chronic renal failure: Evidence from a rare case with undetectable serum free fatty acids and population data. Lipids Health Dis. 18, 1–9 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sieber, J. & Jehle, A. W. Free fatty acids and their metabolism affect function and survival of podocytes. Front. Endocrinol. 5, 186 (2014).Article 

Google Scholar 
Wahl, P., Ducasa, G. M. & Fornoni, A. Systemic and renal lipids in kidney disease development and progression. Am. J. Physiol.-Renal Physiol. 310, F433–F445 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kamijo-Ikemori, A. et al. Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction. Am. J. Pathol. 169, 1107–1117 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dai, Y. et al. Inhibition of ACSL4 ameliorates tubular ferroptotic cell death and protects against fibrotic kidney disease. Commun. Biol. 6, 907 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Michalczyk, A., Dołęgowska, B., Heryć, R., Chlubek, D. & Safranow, K. Associations between plasma lysophospholipids concentrations, chronic kidney disease and the type of renal replacement therapy. Lipids Health Dis. 18, 1–9 (2019).Article 

Google Scholar 
Tsutsumi, T., Adachi, M., Nikawadori, M., Morishige, J. & Tokumura, A. Presence of bioactive lysophosphatidic acid in renal effluent of rats with unilateral ureteral obstruction. Life Sci. 89, 195–203 (2011).Article 
CAS 
PubMed 

Google Scholar 
Staiano, L. & De Matteis, M. A. Phosphoinositides in the kidney. J. Lipid Res. 60, 287–298 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, J.-K. et al. Phosphatidylinositol 3-kinase signaling determines kidney size. J. Clin. Invest. 125, 2429–2444 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Nagata, S., Suzuki, J., Segawa, K. & Fujii, T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952–961 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, M. et al. Phosphatidylserine on microparticles and associated cells contributes to the hypercoagulable state in diabetic kidney disease. Nephrol. Dial. Transpl. 33, 2115–2127 (2018).Article 
CAS 

Google Scholar 
Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427 (2010).Article 
CAS 
PubMed 

Google Scholar 
Payne, F. et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc. Natl. Acad. Sci. U. S. A. 111, 8901–8906 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Suzuki, Y., Fausto, A., Hruska, K. A. & Avioli, L. V. Stimulation of phosphatidylcholine biosynthesis in diabetic hypertrophic kidneys. Endocrinology 120, 595–601 (1987).Article 
CAS 
PubMed 

Google Scholar 
Rey, J. W. et al. Acute Renal failure and liver dysfunction after subcutaneous injection of 3-sn-phosphatidylcholine (Lipostabil®)–case report. Z. Gastroenterol. 49, 340–343 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Jung, Y. Y. et al. Protective effect of phosphatidylcholine on lipopolysaccharide-induced acute inflammation in multiple organ injury. Korean J. Physiol. Pharmacol. 17, 209 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Calzada, E., Onguka, O. & Claypool, S. M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321, 29–88 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yang, X. et al. Precision toxicology shows that troxerutin alleviates ochratoxin A–induced renal lipotoxicity. FASEB J. 33, 2212–2227 (2019).Article 
CAS 
PubMed 

Google Scholar 
Afshinnia, F. et al. Circulating free fatty acid and phospholipid signature predicts early rapid kidney function decline in patients with type 1 diabetes. Diabetes Care 44, 2098–2106 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, Q. et al. S1P signaling pathways in pathogenesis of type 2 diabetes. J. Diabetes Res. 2021, 1341750 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Stillwell, W. Membrane biogenesis. In An Introduction to Biological Membranes 315–329 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63772-7.00014-2.Chapter 

Google Scholar 
Liu, X., Du, H., Sun, Y. & Shao, L. Role of abnormal energy metabolism in the progression of chronic kidney disease and drug intervention. Renal Fail. 44, 790–805 (2022).Article 
CAS 

Google Scholar 
Yeung, M. H. Y. et al. Lipidomic analysis reveals the protection mechanism of GLP-1 analogue dulaglutide on high-fat diet-induced chronic kidney disease in mice. Front. Pharmacol. https://doi.org/10.3389/fphar.2021.777395 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, S., Soong, Y., Seshan, S. V. & Szeto, H. H. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am. J. Physiol.-Renal Physiol. 306, F970–F980 (2014).Article 
CAS 
PubMed 

Google Scholar 
Miranda-Díaz, A. G., Cardona-Muñoz, E. G. & Pacheco-Moisés, F. P. The role of cardiolipin and mitochondrial damage in kidney transplant. Oxidat. Med. Cell. Longev. 2019, 1–13 (2019).Article 

Google Scholar 
Sidney, S. et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 1, 594–599 (2016).Article 
PubMed 

Google Scholar 
Lubojemska, A. et al. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biol. 19, e3001230 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. https://doi.org/10.1172/JCI172963 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles