Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability

Singh, S. et al. Monoclonal antibodies: a review. Curr. Clin. Pharmacol. 13, 85–99 (2018).
Google Scholar 
Khetan, R. et al. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs 14, 2020082 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Akbar, R. et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 14, 2008790 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Laustsen, A. H., Greiff, V., Karatt-Vellatt, A., Muyldermans, S. & Jenkins, T. P. Animal immunization, in vitro display technologies, and machine learning for antibody discovery. Trends Biotechnol. 39, 1263–1273 (2021).Wilman, W. et al. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief. Bioinform. 23, bbac267 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Raybould, M. I. J. et al. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl Acad. Sci. USA. 116, 4025–4030 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, Y. et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 11, 239–264 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hummer, A. M., Abanades, B. & Deane, C. M. Advances in computational structure-based antibody design. Curr. Opin. Struct. Biol. 74, 102379 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ahmed, L., Gupta, P. & Martin, K. P. Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Proc. Natl Acad. Sci. USA 118, e2020577118 (2021).Narayanan, H. et al. Design of biopharmaceutical formulations accelerated by machine learning. Mol. Pharm. 18, 3843–3853 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sankar, K. et al. A descriptor set for quantitative structure-property relationship prediction in biologics. Mol. Inform. 41, e2100240 (2022).Zarzar, J. et al. High concentration formulation developability approaches and considerations. MAbs 15, 2211185 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Harmalkar, A. et al. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features. MAbs 15, 2163584 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, W. et al. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib. Ther. 6, 13–29 (2023).CAS 
PubMed 

Google Scholar 
Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov. 17, 197–223 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jain, T. et al. Biophysical properties of the clinical-stage antibody landscape. Proc. Natl Acad. Sci. USA 114, 944–949 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evers, A., Malhotra, S. & Sood, V. D. In silico approaches to deliver better antibodies by design: the past, the present and the future. arXiv https://doi.org/10.48550/arXiv.2305.07488 (2023).Harvey, E. P. et al. An in silico method to assess antibody fragment polyreactivity. Nat. Commun. 13, 7554 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fernández-Quintero, M. L. et al. Assessing developability early in the discovery process for novel biologics. MAbs 15, 2171248 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Khan, A. et al. Toward real-world automated antibody design with combinatorial Bayesian optimization. Cell Rep. Methods 3, 100374 (2023).Ausserwöger, H. et al. Non-specificity as the sticky problem in therapeutic antibody development. Nat. Rev. Chem. 6, 844–861 (2022).Mieczkowski, C. et al. Blueprint for antibody biologics developability. MAbs 15, 2185924 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kingsbury, J. S. et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci. Adv. 6, eabb0372 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wolf Pérez, A.-M. et al. In vitro and in silico assessment of the developability of a designed monoclonal antibody library. MAbs 11, 388–400 (2019).Han, X., Shih, J., Lin, Y., Chai, Q. & Cramer, S. M. Development of QSAR models for in silico screening of antibody solubility. MAbs 14, 2062807 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Widatalla, T., Rollins, Z., Chen, M.-T., Waight, A. & Cheng, A. C. AbPROP: Language and Graph Deep Learning for Antibody Property Prediction. https://icml-compbio.github.io/2023/papers/WCBICML2023_paper53.pdf (2023).Licari, G. et al. Embedding dynamics in intrinsic physicochemical profiles of market-stage antibody-based biotherapeutics. Mol. Pharm. 2, 1096–1111 (2022).Makowski, E. K. et al. Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning. Nat. Biomed. Eng. 8, 45–56 (2023).Jain, T., Boland, T. & Vásquez, M. Identifying developability risks for clinical progression of antibodies using high-throughput in vitro and in silico approaches. MAbs 15, 2200540 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Waight, A. B. et al. A machine learning strategy for the identification of key in silico descriptors and prediction models for IgG monoclonal antibody developability properties. MAbs 15, 2248671 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Park, E. & Izadi, S. Molecular surface descriptors to predict antibody developability. bioRxiv https://doi.org/10.1101/2023.07.18.549448 (2023).Bauer, J. et al. How can we discover developable antibody-based biotherapeutics? Front. Mol. Biosci. 10, 1221626 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Makowski, E. K. et al. Reduction of monoclonal antibody viscosity using interpretable machine learning. MAbs 16, 2303781 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Thrift, W. J. et al. Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity. Brief. Bioinform. 25, bbae123 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Raybould, M. I. J., Turnbull, O. M., Suter, A., Guloglu, B. & Deane, C. M. Contextualising the developability risk of antibodies with lambda light chains using enhanced therapeutic antibody profiling. Commun. Biol. 7, 62 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leem, J., Dunbar, J., Georges, G., Shi, J. & Deane, C. M. ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation. MAbs 8, 1259–1268 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abanades, B. et al. ImmuneBuilder: Deep-learning models for predicting the structures of immune proteins. Commun. Biol. 6, 575 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ruffolo, J. A., Chu, L.-S., Mahajan, S. P. & Gray, J. J. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat. Commun. 14, 2389 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reynisson, B. et al. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted. Ligand Data. J. Proteome Res. 19, 2304–2315 (2020).Article 
CAS 
PubMed 

Google Scholar 
Thorsteinson, N., Gunn, J. R., Kelly, K., Long, W. & Labute, P. Structure-based charge calculations for predicting isoelectric point, viscosity, clearance, and profiling antibody therapeutics. MAbs 13, 1981805 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Hutchinson, M. et al. Enhancement of antibody thermostability and affinity by computational design in the absence of antigen. bioRxiv https://doi.org/10.1101/2023.12.19.572421 (2023).Evers, A. et al. Engineering hydrophobicity and manufacturability for optimized biparatopic antibody–drug conjugates targeting c-MET. MAbs 16, 2302386 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Satława, T. et al. LAP: Liability antibody profiler by sequence & structural mapping of natural and therapeutic antibodies. PLoS Comput. Biol. 20, e1011881 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Feng, J., Jiang, M., Shih, J. & Chai, Q. Antibody apparent solubility prediction from sequence by transfer learning. iScience 25, 105173 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pudžiuvelytė, I. et al. TemStaPro: protein thermostability prediction using sequence representations from protein language models. Bioinformatics 40, btae157 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Manz, R. A., Hauser, A. E., Hiepe, F. & Radbruch, A. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).Article 
CAS 
PubMed 

Google Scholar 
Goodnow, C. C., Vinuesa, C. G., Randall, K. L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nat. Immunol. 11, 681–688 (2010).Article 
CAS 
PubMed 

Google Scholar 
Shehata, L. et al. Affinity maturation enhances antibody specificity but compromises conformational stability. Cell Rep. 28, 3300–3308.e4 (2019).Article 
CAS 
PubMed 

Google Scholar 
Shin, J.-E. et al. Protein design and variant prediction using autoregressive generative models. Nat. Commun. 12, 2403 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pucca, M. B. et al. History of envenoming therapy and current perspectives. Front. Immunol. 10, 1598 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krawczyk, K., Raybould, M. I. J., Kovaltsuk, A. & Deane, C. M. Looking for therapeutic antibodies in next-generation sequencing repositories. MAbs 11, 1197–1205 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Marks, C. & Deane, C. M. How repertoire data are changing antibody science. J. Biol. Chem. 295, 9823–9837 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Petersen, B. M. et al. Regulatory approved monoclonal antibodies contain framework mutations predicted from human antibody repertoires. Front. Immunol. 12, 728694 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Negron, C., Fang, J., McPherson, M. J., Stine, W. B. Jr & McCluskey, A. J. Separating clinical antibodies from repertoire antibodies, a path to in silico developability assessment. MAbs 14, 2080628 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lauer, T. M. et al. Developability index: a rapid In silico tool for the screening of antibody aggregation propensity. J. Pharm. Sci. 101, 2271–2280 (2012).Article 

Google Scholar 
Chen, X. et al. Predicting antibody developability from sequence using machine learning. biorxiv https://doi.org/10.1101/2020.06.18.159798 (2020).Krawczyk, K., Buchanan, A. & Marcatili, P. Data mining patented antibody sequences. MAbs 13, 1892366 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Shetgaonkar, S. & Singh, A. Hybridization of artificial bee colony Aalgorithm with estimation of distribution algorithm for minimum weight dominating set problem. in ICT Systems and Sustainability (eds Tuba, M., Akashe, S., Joshi, A.) 607–619 (Springer, Singapore, 2021).Evers, A. et al. SUMO: In silico sequence assessment using multiple optimization parameters. in Genotype Phenotype Coupling: Methods and Protocols (eds Zielonka, S. & Krah, S.) 383–398 (Springer US, New York, 2023).Makowski, E. K. et al. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat. Commun. 13, 3788 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saltelli, A. et al. Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ. Model. Softw. 114, 29–39 (2019).Article 

Google Scholar 
Balanda, K. P. & Macgillivray, H. L. Kurtosis: A critical review. Am. Stat. 42, 111–119 (1988).Article 

Google Scholar 
Giudicelli, V. & Lefranc, M. P. Ontology for immunogenetics: the IMGT-ONTOLOGY. Bioinformatics 15, 1047–1054 (1999).Article 
CAS 
PubMed 

Google Scholar 
Peres, A. et al. IGHV allele similarity clustering improves genotype inference from adaptive immune receptor repertoire sequencing data. Nucleic Acids Res. 51, e86 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schäfer, J. & Strimmer, K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4, Article32 (2005).Article 
PubMed 

Google Scholar 
Barroso, R., Morrison, W. I. & Morrison, L. J. Molecular dissection of the antibody response: opportunities and needs for application in cattle. Front. Immunol. 11, 1175 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mhanna, V. et al. Adaptive immune receptor repertoire analysis. Nat. Rev. Methods Prim. 4, 1–25 (2024).
Google Scholar 
Sandve, G. K. & Greiff, V. Access to ground truth at unconstrained size makes simulated data as indispensable as experimental data for bioinformatics methods development and benchmarking. Bioinformatics 38, 4994–4996 (2022).Pavlović, M. et al. The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires. Nat. Mach. Intell. 3, 936–944 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Perkins, N. J. et al. Principled approaches to missing data in epidemiologic studies. Am. J. Epidemiol. 187, 568–575 (2018).Article 
PubMed 

Google Scholar 
Hong, S. & Lynn, H. S. Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. BMC Med. Res. Methodol. 20, 199 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Shadbahr, T. et al. The impact of imputation quality on machine learning classifiers for datasets with missing values. Commun. Med. 3, 139 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 16, 1315–1322 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meier, J. et al. Language models enable zero-shot prediction of the effects of mutations on protein function. bioRxiv https://doi.org/10.1101/2021.07.09.450648 (2021).Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 8, 1099–1106 (2023).Nijkamp, E., Ruffolo, J., Weinstein, E. N., Naik, N. & Madani, A. ProGen2: Exploring the Boundaries of Protein Language Models. https://openreview.net (2022).Vatcheva, K. P., Lee, M., McCormick, J. B. & Rahbar, M. H. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology 6, 227 (2016).Azur, M. J., Stuart, E. A., Frangakis, C. & Leaf, P. J. Multiple imputation by chained equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20, 40–49 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Waljee, A. K. et al. Comparison of imputation methods for missing laboratory data in medicine. BMJ Open 3, e002847 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Aracri, F., Giovanna Bianco, M., Quattrone, A. & Sarica, A. Imputation of missing clinical, cognitive and neuroimaging data of dementia using missForest, a random forest based algorithm. in 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS) 684–688 (2023).Molnar, C. Interpretable Machine Learning, 318 (Lulu.com, 2020).Teixeira, A. A. R. et al. Simultaneous affinity maturation and developability enhancement using natural liability-free CDRs. MAbs 14, 2115200 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Tiller, T. et al. A fully synthetic human fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5, 445–470 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Erasmus, M. F. et al. A single donor is sufficient to produce a highly functional in vitro antibody library. Commun. Biol. 4, 350 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Richardson, E. et al. Characterisation of the immune repertoire of a humanised transgenic mouse through immunophenotyping and high-throughput sequencing. Elife 12, e81629 (2023).Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ofer, D., Brandes, N. & Linial, M. The language of proteins: NLP, machine learning & protein sequences. Comput. Struct. Biotechnol. J. 19, 1750–1758 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vu, M. H. et al. Linguistically inspired roadmap for building biologically reliable protein language models. Nat. Mach. Intell. 5, 485–496 (2023).Vu, M. H. et al. ImmunoLingo: Linguistics-based formalization of the antibody language. arXiv https://doi.org/10.48550/arXiv.2209.12635 (2022).Schneider, C., Raybould, M. I. J. & Deane, C. M. SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 50, D1368–D1372 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bradbury, A. R. M., Dübel, S., Knappik, A. & Plückthun, A. Animal- versus in vitro-derived antibodies: avoiding the extremes. MAbs 13, 1950265 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Glanville, J. et al. Deep sequencing in library selection projects: what insight does it bring? Curr. Opin. Struct. Biol. 33, 146–160 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mason, D. M. et al. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Res. 46, 7436–7449 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jaffe, D. B. et al. Functional antibodies exhibit light chain coherence. Nature 611, 352–357 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burbach, S. M. & Briney, B. Improving antibody language models with native pairing. arXiv https://doi.org/10.1016/j.patter.2024.100967 (2023).Akbar, R. et al. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Rep. 34, 108856 (2021).Article 
CAS 
PubMed 

Google Scholar 
Norman, R. A. et al. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief. Bioinform. 21, 1549–1567 (2020).Article 
PubMed 

Google Scholar 
Vishwakarma, P. et al. VHH structural modelling approaches: a critical review. Int. J. Mol. Sci. 23, 3721 (2022).Bailly, M. et al. Predicting antibody developability profiles through early stage discovery screening. MAbs 12, 1743053 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Schoch, A. et al. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc. Natl Acad. Sci. USA 112, 5997–6002 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Piche-Nicholas, N. M. et al. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs 10, 81–94 (2018).Article 
CAS 
PubMed 

Google Scholar 
Grevys, A. et al. Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. iScience 25, 103746 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Prihoda, D. et al. BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. MAbs 14, 2020203 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Marks, C., Hummer, A. M., Chin, M. & Deane, C. M. Humanization of antibodies using a machine learning approach on large-scale repertoire data. Bioinformatics 37, 4041–4047 (2021).Tennenhouse, A. et al. Computational optimization of antibody humanness and stability by systematic energy-based ranking. Nat. Biomed. Eng. 8, 30–44 (2023).Ramon, A. et al. Assessing antibody and nanobody nativeness for hit selection and humanization with AbNatiV. Nat. Mach. Intell. 6, 74–91 (2024).Article 

Google Scholar 
The Antibody Society. Antibody Therapeutics Approved or in Regulatory Review in the EU or US. https://www.antibodysociety.org/resources/approved-antibodies/ (2022).Tilegenova, C. et al. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. MAbs 12, 1692764 (2020).Article 
PubMed 

Google Scholar 
Seeliger, D. et al. Boosting antibody developability through rational sequence optimization. MAbs 7, 505–515 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600–612 (2021).Article 
CAS 
PubMed 

Google Scholar 
Schretter, C., Kobbelt, L. & Dehaye, P.-O. Golden ratio sequences for low-discrepancy sampling. J. Graph. Tools 16, 95–104 (2012).Article 

Google Scholar 
McKay, M. D., Beckman, R. J. & Conover, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979).
Google Scholar 
Apgar, J. R. et al. Modeling and mitigation of high-concentration antibody viscosity through structure-based computer-aided protein design. PLoS One 15, e0232713 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van der Flier, F. J. et al. What makes the effect of protein mutations difficult to predict? bioRxiv https://doi.org/10.1101/2023.09.25.559319 (2023).Childers, M. C. & Daggett, V. Molecular dynamics methods for antibody design. in Computer-Aided Antibody Design (eds Tsumoto, K. & Kuroda, D.) 109–124 (Springer US, 2023).Knapp, B., Frantal, S., Cibena, M., Schreiner, W. & Bauer, P. Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible? J. Comput. Biol. 18, 997–1005 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jaszczyszyn, I. et al. Structural modeling of antibody variable regions using deep learning—progress and perspectives on drug discovery. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2023.1214424 (2023).Kulikova, A. V. et al. Two sequence-and two structure-based ML models have learned different aspects of protein biochemistry. Sci. Rep. 13, 13280 (2023).Makowski, E. K., Chen, H.-T. & Tessier, P. M. Simplifying complex antibody engineering using machine learning. Cell Syst. 14, 667–675 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fernández-Quintero, M. L. et al. Challenges in antibody structure prediction. MAbs 15, 2175319 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Lane, T. J. Protein structure prediction has reached the single-structure frontier. Nat. Methods 20, 170–173 (2023).Fernández-Quintero, M. L. et al. Characterizing the diversity of the CDR-H3 loop conformational ensembles in relationship to antibody binding properties. Front. Immunol. 9, 3065 (2018).Article 
PubMed 

Google Scholar 
Waibl, F. et al. Comparison of hydrophobicity scales for predicting biophysical properties of antibodies. Front Mol. Biosci. 9, 960194 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoerschinger, V. J. et al. PEP-patch: Electrostatics in protein-protein recognition, specificity, and antibody Ddevelopability. J. Chem. Inf. Model. 63, 6964–6971 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, T. H. & Jung, S. T. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp. Mol. Med. 51, 1–9 (2019).PubMed 

Google Scholar 
Abanades, B. et al. The patent and literature antibody database (PLAbDab): an evolving reference set of functionally diverse, literature-annotated antibody sequences and structures. Nucleic Acids Res. 52, D545–D551 (2024).Article 
PubMed 

Google Scholar 
Lee, J., Han, K., Kim, J., Yu, H. & Lee, Y. Solvent: A framework for protein folding. arXiv https://doi.org/10.48550/arXiv.2307.04603 (2023).Singh, R. et al. Learning the language of antibody hypervariability. bioRxiv https://doi.org/10.1101/2023.04.26.538476 (2023).Khade, P. M., Maser, M., Gligorijevic, V. & Watkins, A. M. Mixed structure- and sequence-based approach for protein graph neural networks with application to antibody developability prediction. bioRxiv https://doi.org/10.1101/2023.06.26.546331 (2023).Akbar, R. et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs 14, 2031482 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, V. et al. Best practices for interpretable machine learning in computational biology. bioRxiv https://doi.org/10.1101/2022.10.28.513978 (2022).Kovaltsuk, A. et al. Observed antibody space: a resource for data mining next-generation sequencing of antibody repertoires. J. Immunol. 201, 2502–2509 (2018).Article 
CAS 
PubMed 

Google Scholar 
Vázquez Bernat, N. et al. High-quality library preparation for NGS-based immunoglobulin germline gene inference and repertoire expression analysis. Front. Immunol. 10, 660 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).Article 
CAS 
PubMed 

Google Scholar 
Giudicelli, V. et al. From IMGT-ONTOLOGY to IMGT/HighV-QUEST for NGS immunoglobulin (IG) and T cell receptor (TR) repertoires in autoimmune and infectious diseases. Autoimmun Infec. Dis. https://doi.org/10.16966/2470-1025.103 (2015).Raybould, M. I. J. et al. Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res. 48, D383–D388 (2020).Article 
CAS 
PubMed 

Google Scholar 
Dunbar, J. & Deane, C. M. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics 32, 298–300 (2016).Article 
CAS 
PubMed 

Google Scholar 
Osorio, D., Rondon-Villarreal, P. & Torres, R. Peptides: A Package for Data Mining of Antimicrobial Peptides. https://journal.r-project.org/archive/2015/RJ-2015-001/RJ-2015-001.pdf (2015).RStudio Team. RStudio: Integrated Development Environment for R. http://www.rstudio.com/ (2020).Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005).Article 
CAS 
PubMed 

Google Scholar 
Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins *. Biochemistry 6, 1948–1954 (1967).Article 
CAS 
PubMed 

Google Scholar 
Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chailyan, A., Marcatili, P. & Tramontano, A. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity: analysis of VH-VL interface in antibodies. FEBS J. 278, 2858–2866 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl Acad. Sci. USA 81, 140–144 (1984).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 88, 1895–8 (1980).Guruprasad, K., Reddy, B. V. B. & Pandit, M. W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel. 4, 155–161 (1990).Article 
CAS 

Google Scholar 
Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37, 23–28 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Word, J. M., Lovell, S. C., Richardson, J. S. & Richardson, D. C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285, 1735–1747 (1999).Article 
CAS 
PubMed 

Google Scholar 
Brandon, C. J., Martin, B. P., McGee, K. J., Stewart, J. J. P. & Braun-Sand, S. B. An approach to creating a more realistic working model from a protein data bank entry. J. Mol. Model. 21, 3 (2015).Article 
PubMed 

Google Scholar 
Cock, P. J. A. et al. Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mitternacht, S. FreeSASA: An open source C library for solvent accessible surface area calculations. F1000Res. 5, 189 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).Article 
CAS 
PubMed 

Google Scholar 
Bakan, A., Meireles, L. M. & Bahar, I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pilgrim, M. & Willison, S. Dive into Python 3 2nd edn, 412 (Springer, 2009).Jubb, H. C. et al. Arpeggio: A web server for calculating and visualising interatomic interactions in protein structures. J. Mol. Biol. 429, 365–371 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).Zhong, J. Csi-Greifflab/mwds_calculator. https://github.com/csi-greifflab/mwds_calculator (2023).Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Otasek, D., Morris, J. H., Bouças, J., Pico, A. R. & Demchak, B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 20, 185 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kassambara, A. & Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://CRAN.R-project.org/package=factoextra (2020).R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).Greiff, V. et al. A minimal model of peptide binding predicts ensemble properties of serum antibodies. BMC Genomics 13, 79 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van der Loo, M. P. J. The stringdist package for approximate string matching. R. J. 6, 111–122, https://CRAN.R-project.org/package=stringdist (2014).Article 

Google Scholar 
Bachmann, M. Levenshtein Python Package https://pypi.org/project/python-Levenshtein/ (2022).Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. https://scikit-learn.org/stable/ (2011).Dask Development Team. Dask: Library for dynamic task scheduling. https://dask.org (2016).Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kvalseth, T. O. Cautionary note about R2. Am. Stat. 39, 279–285 (1985).
Google Scholar 
Mayer, M. MissRanger: Fast Imputation of Missing Values. https://CRAN.R-project.org/package=missRanger (2023).Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv [cs.CL] (2018).Schrödinger, L. L. C. & DeLano, W. PyMOL. https://pymol.org/ (2024).Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article 

Google Scholar 
Adobe Inc. Adobe Illustrator. https://www.adobe.com (2019).Ferdous, S. & Martin, A. C. R. AbDb: antibody structure database-a database of PDB-derived antibody structures. Database 2018, bay040 (2018).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evans, R. et al. Protein complex prediction with AlphaFold-multimer. bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).Kuhlman, B. & Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).Article 
CAS 
PubMed 

Google Scholar 
Abraham, M. et al. GROMACS 2023.1 Manual. https://doi.org/10.5281/zenodo.7852189 (2023).Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Article 
CAS 

Google Scholar 
Bekker, G.-J., Fukuda, I., Higo, J. & Kamiya, N. Mutual population-shift driven antibody-peptide binding elucidated by molecular dynamics simulations. Sci. Rep. 10, 1406 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Haug, E. J., Arora, J. S. & Matsui, K. A steepest-descent method for optimization of mechanical systems. J. Optim. Theory Appl. 19, 401–424 (1976).Article 

Google Scholar 
Braun, E. et al. Best practices for foundations in molecular simulations. Living J. Comput. Mol. Sci. 1, 5957 (2019).Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).Article 
CAS 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
PubMed 

Google Scholar 
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).Article 
CAS 

Google Scholar 
Miyamoto, S. & Kollman, P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).Article 
CAS 

Google Scholar 
Simmonett, A. C. & Brooks, B. R. A compression strategy for particle mesh Ewald theory. J. Chem. Phys. 154, 054112 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pastore, M., Loro, P. A. D., Mingione, M. & Calcagni’, A. Overlapping: Estimation of Overlapping in Empirical Distributions. https://CRAN.R-project.org/package=overlapping (2022).Smorodina, E. Structural data for the antibody developability manuscript: cartography of developability landscapes in native and human-engineered antibodies. Zenodo https://doi.org/10.5281/zenodo.10013524 (2023).Article 

Google Scholar 

Hot Topics

Related Articles