First voltammetric analysis of two possible anticancer drug candidates using an unmodified glassy carbon electrode

Sztanke, K. & Tkaczyński, T. (inventors). Medical University of Lublin (assignee). Preparation of new dimethyl esters of 2-[(1-aryl-Δ2-imidazolin-2-ylhydrazono]succinic acids. Polish Patent, PL 188616 (2005).Worzakowska, M., Sztanke, M., Rzymowska, J. & Sztanke, K. Thermal decomposition path—studied by the simultaneous thermogravimetry coupled with Fourier transform infrared spectroscopy and quadrupole mass spectrometry—of imidazoline/dimethyl succinate hybrids and their biological characterization. Materials 16, 4638 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sztanke, K., Matosiuk, D. & Fidecka, S. (inventors). Medical University of Lublin (assignee). New 3-hydroxy-4-oxo-8-aryl-7,8-dihydro-6H-imidazo[2,1-c][1,2,4]triazines and method for their manufacture. Polish Patent, PL 196752 (2008).Sztanke, K. et al. Antinociceptive activity of new imidazolidine carbonyl derivatives. Part 4. Synthesis and pharmacological activity of 8-aryl-3,4-dioxo-2H,8H–6,7-dihydroimidazo[2,1-c][1,2,4]triazines. Eur. J. Med. Chem. 40, 127–134 (2005).Article 
CAS 
PubMed 

Google Scholar 
Martiskainen, O., Sztanke, K., Matosiuk, D. & Pihlaja, K. Electron ionization mass spectra of 8-aryl-3,4-dioxo-2H,8H–6,7-dihydroimidazo[2,1-c][1,2,4]triazines. Do they exhibit tautomerism in the gas phase? Rapid Commun. Mass Spectrom. 20, 2548–2552 (2006).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sztanke, K. et al. Identification of antitumour activity of novel derivatives of 8-aryl-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione and 8-aryl-4-imino-2,3,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3(6H)-one. Bioorg. Med. Chem. 15, 2837–2849 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bartyzel, A., Sztanke, M. & Sztanke, K. Thermal studies of analgesic active 8-aryl-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3,4-diones. J. Therm. Anal. Calorim. 123, 2053–2060 (2016).Article 
CAS 

Google Scholar 
Patrick, G. L. An Introduction to Medicinal Chemistry (Oxford University Press Inc., 2009).
Google Scholar 
Cao, F. et al. Electrochemical sensor for detecting pain reliever/fever reducer drug acetaminophen based on electrospun CeBiOx nanofibers modified screen-printed electrode. Sens. Actuators B 256, 143–150 (2018).Article 
CAS 

Google Scholar 
Seguro, I., Pacheco, J. G. & Delerue-Matos, C. Low cost, easy to prepare and disposable electrochemical molecularly imprinted sensor for diclofenac detection. Sensors 21, 1975–1985 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barek, J. Voltammetric and amperometric applications of silver amalgam electrodes for monitoring of reducible organic compounds. Trends Anal. Chem. 170, 117416 (2024).Article 
CAS 

Google Scholar 
Ganesha, H., Veeresh, S., Nagaraju, Y. S. & Devendrappa, H. MoS2/Polymer nanotube composite material used for the electrochemical sensor detection of biologically active compounds. Inorg. Chem. Commun. 156, 111228 (2023).Article 
CAS 

Google Scholar 
Barek, J. et al. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis 19, 2003–2014 (2007).Article 
CAS 

Google Scholar 
Nehru, R., Chen, C.-W. & Dong, C.-D. Recent advances in electrochemical detection of furazolidone: A review. Microchem. J. 197, 109901 (2024).Article 
CAS 

Google Scholar 
Fendrych, K., Górska-Ratusznik, A. & Smajdor, J. Electrochemical assays for the determination of antidiabetic drugs—A review. Micromachines 15, 10 (2024).Article 

Google Scholar 
Niwa, O., Ohta, S., Shiba, S., Kato, D. & Kurita, R. Sputter deposited nanocarbon film electrodes for electrochemical analysis of biomolecules. Electrochemistry 92, 022004 (2024).Article 
CAS 

Google Scholar 
Ţuchiu, B.-M., Stefan-van Staden, R.-I. & van Staden, J. K. F. Recent trends in ibuprofen and ketoprofen electrochemical quantification—A review. Crit. Rev. Anal. Chem. 54, 61–72 (2024).Article 
PubMed 

Google Scholar 
Swain, N., Soni, I., Kumar, P. & Kudur Jayaprakash, G. Electrochemical reduction and voltammetric sensing of lindane at the carbon (glassy and pencil) electrode. Electrochem 3, 248–258 (2022).Article 
CAS 

Google Scholar 
Pushpanjali, P. A., Manjunatha, J. G. & Hareesha, N. An overview of recent developments of carbon-based sensors for the analysis of drug molecules. J. Electrochem. Sci. Eng. 11, 161–177 (2021).CAS 

Google Scholar 
Saka, C. Electroanalytical approaches for determination of prostate cancer drugs in biological samples and dosage forms. Crit. Rev. Anal. Chem. 49, 403–414 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gautam, J., Raj, M. & Goyal, R. N. Determination of tryptophan at carbon nanomaterials modified glassy carbon sensors: A comparison. J. Electrochem. Soc. 167, 066504 (2020).Article 
ADS 
CAS 

Google Scholar 
Spallacci, C., Görlin, M., Kumar, A., D’Amario, L. & Cheah, M. H. Fabricating high-purity graphite disk electrodes as a cost-effective alternative in fundamental electrochemistry research. Sci. Rep. 14, 4258 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moreira, D. A. R. et al. Simple and rapid determination of clonidine in pharmaceutical samples by voltammetry using a bare glassy carbon electrode. Electroanalysis 35, e202200213 (2023).Article 
CAS 

Google Scholar 
Karakaya, S. & Dilgin, D. G. Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Monatsh. Chem. 150, 1003–1010 (2019).Article 
CAS 

Google Scholar 
El-Attar, M. & Abdel-Azzem, M. Electro-elucidation and quantification of olopatadine hydrochloride in bulk form and eye drops using modification free glassy carbon electrode with its development by different electrolytes and surfactants. Electroanalysis 36, e202300079 (2024).Article 
CAS 

Google Scholar 
Thirumalraj, B., Palanisamy, S., Chen, S.-M. & Sayee Kannan, R. Alumina polished glassy carbon electrode as a simple electrode for lower potential electrochemical detection of dopamine in its submicromolar level. Electroanalysis 28, 425–430 (2016).Article 
CAS 

Google Scholar 
Pereyra, J., Martinez, M. V., Barbero, C., Bruno, M. & Acevedo, D. Hydrogel-graphene oxide nanocomposites as electrochemical platform to simultaneously determine dopamine in presence of ascorbic acid using an unmodified glassy carbon electrode. J. Compos. Sci. 3, 1 (2019).Article 
CAS 

Google Scholar 
Oliveira, S. C. B., Vivan, M. & Oliveira-Brett, A. M. Electrochemical behavior of thalidomide at a glassy carbon electrode. Electroanalysis 20, 2429–2434 (2008).Article 

Google Scholar 
Ghalkhani, M., Fernandes, I. P. G., Oliveira, S. C. B., Shahrokhian, S. & Oliveira-Brett, A. M. Anodic behavior of clioquinol at a glassy carbon electrode. Bioelectrochemisty 80, 175–181 (2011).Article 
CAS 

Google Scholar 
Pontinha, A. D. R., Oliveira, S. C. B. & Oliveira-Brett, A. M. Electrochemical oxidation of metolazone at a glassy carbon electrode. Electroanalysis 20, 2531–2536 (2008).Article 
CAS 

Google Scholar 
Shah, A., Diculescu, V. C., Qureshi, R. & Oliveira-Brett, A. M. Electrochemical behaviour of dimethyl-2-oxoglutarate on glassy carbon electrode. Bioelectrochemistry 77, 145–150 (2010).Article 
CAS 
PubMed 

Google Scholar 
Lyalin, B. V. et al. Electrooxidation is a promising approach to functionalization of pyrazole-type compounds. Molecules 26, 4749 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, M.-Y., Tang, Y.-F. & Han, G.-Z. Recent advances in the synthesis of aromatic azo compounds. Molecules 28, 6741 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z.-Q. et al. Oxidative dehydrogenation of hydrazobenzenes toward azo compounds catalyzed by tert-butyl nitrite in EtOH. ACS Omega 5, 28856–28862 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nosheen, E. et al. Electrochemical oxidation of hydantoins at glassy carbon electrode. Electrochim. Acta 80, 108–117 (2012).Article 
CAS 

Google Scholar 
Cadet, J., Wagner, J. R., Shafirovich, V. & Geacintov, N. E. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int. J. Radiat. Biol. 90, 423–432 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).
Google Scholar 
Gugała-Fekner, D. Adenine adsorption in different pH acetate buffer. Physicochem. Probl. Miner. Process. 58, 144446 (2022).
Google Scholar 
Mocak, J., Bond, A. M., Mitchell, S. & Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure Appl. Chem. 69, 297–328 (1997).Article 
CAS 

Google Scholar 
ICH Steering Committee Validation of analytical procedures: Text and Methodology Q2(R1). Harmonized Tripartite Guideline (2005).Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE—analytical GREEnness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles