Electrochemical sensor based on mesoporous g-C3N4/N-CNO/gold nanoparticles for measuring oxycodone

Fabbian, F. et al. Pain prevalence and management in an internal medicine setting in Italy. Pain Res. Treat. 2014(1), 628284 (2014).PubMed 
PubMed Central 

Google Scholar 
Ansari, S. & Masoum, S. A hybrid imprinted polymer based on magnetic graphene oxide and carbon dots for ultrasonic assisted dispersive solid-phase microextraction of oxycodone. Microchem. J. 164, 105988 (2021).Article 
CAS 

Google Scholar 
Riley, J., Eisenberg, E., Müller-Schwefe, G., Drewes, A. M. & Arendt-Nielsen, L. Oxycodone: a review of its use in the management of pain. Curr. Med. Res. Opin. 24, 175–192 (2008).Article 
CAS 
PubMed 

Google Scholar 
Zwisler, S. T. et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin. Pharmacol. Toxicol. 104, 335–344 (2009).Article 
CAS 
PubMed 

Google Scholar 
Mynttinen, E. et al. Electrochemical detection of oxycodone and its main metabolites with Nafion-coated single-walled carbon nanotube electrodes. Anal. Chem. 92, 8218–8227 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosenblum, A., Marsch, L. A., Joseph, H. & Portenoy, R. K. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp. Clin. Psychopharmacol. 16, 405 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, M. et al. Silver nanoparticle on zinc oxide array for label-free detection of opioids through surface-enhanced raman spectroscopy. RSC Adv. 11, 11329–11337 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meatherall, R. GC-MS quantitation of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone in blood. J. Anal. Toxicol. 29, 301–308 (2005).Article 
CAS 
PubMed 

Google Scholar 
Moore, C., Rana, S. & Coulter, C. Determination of meperidine, tramadol and oxycodone in human oral fluid using solid phase extraction and gas chromatography–mass spectrometry. J. Chromatogr. B 850, 370–375 (2007).Article 
CAS 

Google Scholar 
Gemba, Y., Konishi, M., Sakata, T. & Okabayashi, Y. Determination of oxycodone and its metabolite, noroxycodone, in human plasma by HPLC with Post-column chemiluminescence detection using electrogenerated tris (2, 2′-Bipyridyl) ruthenium (III). J. Liq. Chromatogr. Relat. 27, 1611–1626 (2004).Article 
CAS 

Google Scholar 
Malone, J. & Hughes, L. An HPLC-MS/MS method for the determination of oxycodone, noroxycodone & oxymorphone in human plasma. Almac Sci. (2014).Lu, W., Zhao, S., Gong, M., Sun, L. & Ding, L. Simultaneous determination of acetaminophen and oxycodone in human plasma by LC–MS/MS and its application to a pharmacokinetic study. J. Pharm. Anal. 8, 160–167 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Abadie, J. M. et al. Can an immunoassay become a standard technique in detecting oxycodone and its metabolites?. J. Anal. Toxicol. 29, 825–829 (2005).Article 
CAS 
PubMed 

Google Scholar 
Gingras, M., Laberge, M.-H. & Lefebvre, M. Evaluation of the usefulness of an oxycodone immunoassay in combination with a traditional opiate immunoassay for the screening of opiates in urine. J. Anal. Toxicol. 34, 78–83 (2010).Article 
CAS 
PubMed 

Google Scholar 
Tavana, T., Rezvani, A. R. & Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of an electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J. Pharm. Biomed. Anal. 189, 113397 (2020).Article 
CAS 
PubMed 

Google Scholar 
Garrido, J., Delerue-Matos, C., Borges, F., Macedo, T. R. & Oliveira-Brett, A. Voltammetric oxidation of drugs of abuse I Morphine and metabolites. Electroanalysis 16, 1419–1426 (2004).Article 
CAS 

Google Scholar 
Ding, H. & Tao, W. Synthesis of NiO-CNTs nanocomposite for modification of glassy carbon electrode and Application for Electrochemical determination of fentanyl as an opioid analgesic drug. Int. J. Electrochem. Sci 16, 2 (2021).Article 

Google Scholar 
Sohouli, E. et al. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mater. Sci. Eng. C 110, 110684 (2020).Article 
CAS 

Google Scholar 
Akbari, M. et al. Development of an electrochemical fentanyl nanosensor based on MWCNT-HA/Cu-H3BTC nanocomposite. J. Ind. Eng. Chem. 25(114), 418–426 (2022).Article 

Google Scholar 
Afkhami, A., Gomar, F. & Madrakian, T. CoFe2O4 nanoparticles modified carbon paste electrode for simultaneous detection of oxycodone and codeine in human plasma and urine. Sens. Actuators B: Chem. 233, 263–271 (2016).Article 
ADS 
CAS 

Google Scholar 
Khosropour, H., Rezaei, B., Alinajafi, H. A. & Ensafi, A. A. Electrochemical sensor based on glassy carbon electrode modified by polymelamine formaldehyde/graphene oxide nanocomposite for ultrasensitive detection of oxycodone. Microchim. Acta 188, 1–10 (2021).Article 
CAS 

Google Scholar 
Curulli, A. Nanomaterials in electrochemical sensing area: Applications and challenges in food analysis. Molecules 25, 5759 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferrag, C. & Kerman, K. 583822 (Frontiers Media SA, 2020).Ghalkhani, M. et al. Electrochemical monitoring of carbamazepine in biological fluids by a glassy carbon electrode modified with CuO/ZnFe2O4/rGO nanocomposite. Surf. Interfaces 30, 101943 (2022).Article 
CAS 

Google Scholar 
Ghalkhani, M., Gharagozlou, M., Sohouli, E. & Khosrowshahi, E. M. Preparation of an electrochemical sensor based on a HKUST-1/CoFe2O4/SiO2-modified carbon paste electrode for determination of Azaperone. Microchem. J. 175, 107199 (2022).Article 
CAS 

Google Scholar 
Ghalkhani, M., Mirzaie, R. A., Banimostafa, A., Sohouli, E. & Hashemi, E. Electrosynthesis of ternary nonprecious Ni, Cu, Fe oxide nanostructure as efficient electrocatalyst for ethanol electro-oxidation: Design strategy and electrochemical performance. Int. J. Hydrog. Energy 48(55), 21214–21223 (2023).Article 
ADS 
CAS 

Google Scholar 
Laurila, T., Sainio, S. & Caro, M. A. Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Prog. Mater. Sci. 88, 499–594 (2017).Article 
CAS 

Google Scholar 
Bounegru, A. V. & Apetrei, C. Carbonaceous nanomaterials employed in the development of electrochemical sensors based on screen-printing technique—A review. Catalysts 10, 680 (2020).Article 
CAS 

Google Scholar 
Plonska-Brzezinska, M. E. Carbon nano-onions: a review of recent progress in synthesis and applications. ChemNanoMat. 5, 568–580 (2019).Article 
CAS 

Google Scholar 
Bartelmess, J. & Giordani, S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Olejnik, P., Gniadek, M., Echegoyen, L. & Plonska-Brzezinska, M. E. Nanoforest: polyaniline nanotubes modified with carbon nano-onions as a nanocomposite material for easy-to-miniaturize high-performance solid-state supercapacitors. Polymers 10, 1408 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Palkar, A. et al. Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem. Asian J. 2, 625–633 (2007).Article 
CAS 
PubMed 

Google Scholar 
Sohouli, E., Shahdost-Fard, F., Rahimi-Nasrabadi, M., Plonska-Brzezinska, M. E. & Ahmadi, F. Introducing a novel nanocomposite consisting of nitrogen-doped carbon nano-onions and gold nanoparticles for the electrochemical sensor to measure acetaminophen. J. Electroanal. Chem. 15(871), 114309 (2020).Article 

Google Scholar 
Ghalkhani, M., Khosrowshahi, E.M. & Sohouli, E. Chapter 3. Carbon nano-onions: Synthesis, characterization, and application in Handbook of Carbon-Based Nanomaterials 159–207 (Elsevier, 2021), https://doi.org/10.1016/B978-0-12-821996-6.00006-3.Mohapatra, D., Muhammad, O., Sayed, M. S., Parida, S. & Shim, J.-J. In situ nitrogen-doped carbon nano-onions for ultrahigh-rate asymmetric supercapacitor. Electrochim. Acta 331, 135363 (2020).Article 
CAS 

Google Scholar 
Hulicova-Jurcakova, D. et al. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Func. Mater. 19, 1800–1809 (2009).Article 
CAS 

Google Scholar 
Sohouli, E., Adib, K., Maddah, B. & Najafi, M. Manganese dioxide/cobalt tungstate/nitrogen-doped carbon nano-onions nanocomposite as new supercapacitor electrode. Ceram. Int. 48, 295–303 (2022).Article 
CAS 

Google Scholar 
Ornelas, O. et al. On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes. Chem. Commun. 50, 11343–11346 (2014).Article 
CAS 

Google Scholar 
Sohouli, E. et al. A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electroch. Acta 403, 139633 (2022).Article 
CAS 

Google Scholar 
Wang, Z.-W. et al. Mesoporous g-C3N4/β-CD nanocomposites modified glassy carbon electrode for electrochemical determination of 2, 4, 6-trinitrotoluene. Talanta 208, 120410 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Liu, L., Ma, T., Zhang, Y. & Huang, H. 2D graphitic carbon nitride for energy conversion and storage. Adv. Func. Mater. 31, 2102540 (2021).Article 
CAS 

Google Scholar 
Behvandi, S. et al. Synthesis and characterization of Sm2(MoO4)3, Sm2(MoO4)3/GO and Sm2 (MoO4)3/C3N4 nanostructures for improved photocatalytic performance and their anti-cancer the MCF-7 cells. Polyhedron 180, 114424 (2020).Article 
CAS 

Google Scholar 
Gholami, M. et al. A new nano biosensor for maitotoxin with high sensitivity and selectivity based fluorescence resonance energy transfer between carbon quantum dots and gold nanoparticles. J. Photochem. Photobiol. A: Chem. 1(398), 112523 (2020).Article 

Google Scholar 
Motia, S., Bouchikhi, B., Llobet, E. & El Bari, N. Synthesis and characterization of a highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer with gold nanoparticles modified screen-printed electrode for glycerol determination in wastewater. Talanta 216, 120953 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wu, B., Yeasmin, S., Liu, Y. & Cheng, L.-J. Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sens. Actuators B: Chem. 354, 131216 (2022).Article 
CAS 

Google Scholar 
Reddy Pallavolu, M. et al. Design and synthesis of highly efficient nitrogen-doped carbon nano-onions for asymmetric supercapacitors. J. Alloys Compd. 918, 165609 (2022).Article 

Google Scholar 
Kar, S., Bramhaiah, K., John, N. S. & Bhattacharyya, S. Insight into the multistate emissive N, P-doped carbon nano-onions: emerging visible-light absorption for photocatalysis. Chem. Asian J. 16, 1138–1149 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, Y.-T. et al. Ultrafine Ru nanoparticles anchored to porous g-C3N4 as efficient catalysts for ammonia borane hydrolysis. Appl. Catal. A: General 595, 117511 (2020).Article 

Google Scholar 
Cheremina, O. et al. Simultaneous determination of oxycodone and its major metabolite, noroxycodone, in human plasma by high-performance liquid chromatography. Biomed. Chromatogr. 19, 777–782 (2005).Article 
CAS 
PubMed 

Google Scholar 
Gaudette, F., Sirhan-Daneau, A., St-Onge, M., Turgeon, J. & Michaud, V. Development of a sensitive method for the determination of oxycodone and its major metabolites noroxycodone and oxymorphone in human plasma by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 1008, 174–180 (2016).Article 
CAS 

Google Scholar 
Mynttinen, E. et al. Electrochemical detection of oxycodone and its main metabolites with Nafion-coated single-walled carbon nanotube electrodes. Anal. Chem. 92(12), 8218–8227 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nakhla, D., Hussien, L., Nasef, N., Hassan, H. & Abdallah, I. Sensitive UPLC–MS/MS method for oxycodone quantification in serum and brain tissue homogenates: application to an interaction study in rats. J. Adv. Pharm. Res. 4(3), 83–93 (2020).Article 

Google Scholar 
Ares, A. M. et al. A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 174, 454–461 (2017).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles