H2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H2 from water electrolysis

Meyer, L.-E., Hobisch, M. & Kara, S. Process intensification in continuous flow biocatalysis by up and downstream processing strategies. Curr. Opin. Biotechnol. 78, 102835 (2022).Article 
PubMed 

Google Scholar 
Ley, S. V. On being green: can flow chemistry help? Chem. Rec. 12, 378–390 (2012).Article 
PubMed 

Google Scholar 
Tang, Z., Oku, Y. & Matsuda, T. Application of immobilized enzymes in flow biocatalysis for efficient synthesis. Org. Process Res. Dev. 28, 1308–1326 (2024).Britton, J., Majumdar, S. & Weiss, G. A. Continuous flow biocatalysis. Chem. Soc. Rev. 47, 5891–5918 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).Article 
PubMed 

Google Scholar 
Romero-Fernández, M. & Paradisi, F. Protein immobilization technology for flow biocatalysis. Curr. Opin. Chem. Biol. 55, 1–8 (2020).Article 
PubMed 

Google Scholar 
Tamborini, L., Fernandes, P., Paradisi, F. & Molinari, F. Flow bioreactors as complementary tools for biocatalytic process intensification. Trends Biotechnol. 36, 73–88 (2018).Article 
PubMed 

Google Scholar 
Stuermer, R., Hauer, B., Hall, M. & Faber, K. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr. Opin. Chem. Biol. 11, 203–213 (2007).Article 
PubMed 

Google Scholar 
Toogood, H. S. et al. Structure-based insight into the asymmetric bioreduction of the C=C double bond of alpha, beta-unsaturated nitroalkenes by pentaerythritol tetranitrate reductase. Adv. Synth. Catal. 350, 2789–2803 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Toogood, H. S., Gardiner, J. M. & Scrutton, N. S. Biocatalytic reductions and chemical versatility of the old yellow enzyme family of flavoprotein oxidoreductases. ChemCatChem 2, 892–914 (2010).Article 

Google Scholar 
Stott, K., Saito, K., Thiele, D. J. & Massey, V. Old yellow enzyme. The discovery of multiple isozymes and a family of related proteins. J. Biol. Chem. 268, 6097–6106 (1993).Article 
PubMed 

Google Scholar 
Toogood, H. S., Knaus, T. & Scrutton, N. S. Alternative hydride sources for ene‐reductases: current trends. ChemCatChem 6, 951–954 (2014).Article 

Google Scholar 
Knaus, T. et al. Better than nature: nicotinamide biomimetics that outperform natural coenzymes. J. Am. Chem. Soc. 138, 1033–1039 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Reeve, H. A. et al. A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H. Chem. Commun. 58, 10540–10543 (2022).Article 

Google Scholar 
Zhang, W. & Hollmann, F. Nonconventional regeneration of redox enzymes—a practical approach for organic synthesis? Chem. Commun. 54, 7281–7289 (2018).Article 

Google Scholar 
Bernard, J., van Heerden, E., Arends, I. W. C. E., Opperman, D. J. & Hollmann, F. Chemoenzymatic reduction of conjugated C=C double bonds. ChemCatChem 4, 196–199 (2012).Article 

Google Scholar 
Al-Shameri, A., Willot, S. J.-P., Paul, C. E., Hollmann, F. & Lauterbach, L. H2 as a fuel for flavin- and H2O2-dependent biocatalytic reactions. Chem. Commun. 56, 9667–9670 (2020).Article 

Google Scholar 
Joseph Srinivasan, S. et al. E. coli nickel-iron hydrogenase 1 catalyses non-native reduction of flavins: demonstration for alkene hydrogenation by old yellow enzyme ene-reductases. Angew. Chem. Int. Ed. 60, 13824–13828 (2021).Article 

Google Scholar 
Ramirez, M. A. et al. H2-driven reduction of flavin by hydrogenase enables cleaner operation of nitroreductases for nitro-group to amine reductions. Front. Catal. 2, 906694 (2022).Article 

Google Scholar 
Grau, M. M. et al. Photoenzymatic reduction of C=C double bonds. Adv. Synth. Catal. 351, 3279–3286 (2009).Article 

Google Scholar 
Taglieber, A., Schulz, F., Hollmann, F., Rusek, M. & Reetz, M. T. Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. Chembiochem 9, 565–572 (2008).Article 
PubMed 

Google Scholar 
Hollmann, F., Hofstetter, K., Habicher, T., Hauer, B. & Schmid, A. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation. J. Am. Chem. Soc. 127, 6540–6541 (2005).Article 
PubMed 

Google Scholar 
Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).Article 
PubMed 

Google Scholar 
Ruinatscha, R., Dusny, C., Buehler, K. & Schmid, A. Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology. Adv. Synth. Catal. 351, 2505–2515 (2009).Article 

Google Scholar 
Valotta, A., Malihan-Yap, L., Hinteregger, K., Kourist, R. & Gruber-Woelfler, H. Design and investigation of a photocatalytic setup for efficient biotransformations within recombinant cyanobacteria in continuous flow. ChemSusChem 15, e202201468 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Szczepańska, E. et al. Ene-reductase transformation of massoia lactone to δ-decalactone in a continuous-flow reactor. Sci. Rep. 11, 18794 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Lauterbach, L. & Lenz, O. How to make the reducing power of H2 available for in vivo biosyntheses and biotransformations. Curr. Opin. Chem. Biol. 49, 91–96 (2019).Article 
PubMed 

Google Scholar 
Lauterbach, L., Lenz, O. & Vincent, K. A. H. 2-driven cofactor regeneration with NAD(P)+-reducing hydrogenases. FEBS J. 280, 3058–3068 (2013).Article 
PubMed 

Google Scholar 
Ratzka, J., Lauterbach, L., Lenz, O. & Ansorge-Schumacher, M. B. Systematic evaluation of the dihydrogen-oxidising and NAD+-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 as a cofactor regeneration catalyst. Biocatal. Biotranformation 29, 246–252 (2011).Article 

Google Scholar 
Mordhorst, S. & Andexer, J. N. Round, round we go—strategies for enzymatic cofactor regeneration. Nat. Prod. Rep. 37, 1316–1333 (2020).Article 
PubMed 

Google Scholar 
Preissler, J. et al. Dihydrogen‐driven NADPH recycling in imine reduction and P450‐catalyzed oxidations mediated by an engineered O2 ‐tolerant hydrogenase. ChemCatChem 12, 4853–4861 (2020).Article 

Google Scholar 
Lauterbach, L. & Lenz, O. Catalytic production of hydrogen peroxide and water by oxygen-tolerant NiFe-hydrogenase during H2 cycling in the presence of O2. J. Am. Chem. Soc. 135, 17897–17905 (2013).Article 
PubMed 

Google Scholar 
Holzer, A. K. et al. Asymmetric biocatalytic amination of ketones at the expense of NH3 and molecular hydrogen. Org. Lett. 17, 2431–2433 (2015).Article 
PubMed 

Google Scholar 
Lonsdale, T. H. et al. H2-driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O2-tolerant hydrogenase and a P450 monooxygenase. Chem. Commun. 51, 16173–16175 (2015).Article 

Google Scholar 
Al-Shameri, A. et al. Synthesis of N-heterocycles from diamines via H2-driven NADPH recycling in the presence of O2. Green. Chem. 21, 1396–1400 (2019).Article 

Google Scholar 
Opperman, D. J. et al. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem. Biophys. Res. Commun. 393, 426–431 (2010).Article 
PubMed 

Google Scholar 
Lauterbach, L. et al. The hydrogenase subcomplex of the NAD + ‐reducing [NiFe] hydrogenase from Ralstonia eutropha—insights into catalysis and redox interconversions. Eur. J. Inorg. Chem. 2011, 1067–1079 (2011).Article 

Google Scholar 
Lauterbach, L., Idris, Z., Vincent, K. A. & Lenz, O. Catalytic properties of the isolated diaphorase fragment of the NAD+-reducing NiFe-hydrogenase from Ralstonia eutropha. PloS one 6, e25939 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Son, E. J. et al. Carbon nanotube–graphitic carbon nitride hybrid films for flavoenzyme‐catalyzed photoelectrochemical cells. Adv. Funct. Mater. 28, 1705232 (2018).Article 

Google Scholar 
Choi, D. S., Kim, J., Hollmann, F. & Park, C. B. Solar‐assisted eBiorefinery: photoelectrochemical pairing of oxyfunctionalization and hydrogenation reactions. Angew. Chem. Int. Ed. Engl. 132, 16020–16024 (2020).Article 

Google Scholar 
Al-Shameri, A. et al. Powering artificial enzymatic cascades with electrical energy. Angew. Chem. Int. Ed. 59, 10929–10933 (2020).Article 

Google Scholar 
O’Brien, M., Baxendale, I. R. & Ley, S. V. Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. Org. Lett. 12, 1596–1598 (2010).Article 
PubMed 

Google Scholar 
Poznansky, B., Cleary, S. E., Thompson, L. A., Reeve, H. A. & Vincent, K. A. Boosting the productivity of H2-driven biocatalysis in a commercial hydrogenation flow reactor using H2 from water electrolysis. Front. Chem. Eng. 3, 718257 (2021).Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).Article 
PubMed 

Google Scholar 
Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).Article 

Google Scholar 
Mallia, C. J. & Baxendale, I. R. The use of gases in flow synthesis. Org. Process Res. Dev. 20, 327–360 (2016).Article 

Google Scholar 
Greiner, L. et al. Membrane aerated hydrogenation: enzymatic and chemical homogeneous catalysis. Adv. Synth. Catal. 345, 679–683 (2003).Article 

Google Scholar 
Grushevenko, E. A., Borisov, I. L. & Volkov, A. V. High-selectivity polysiloxane membranes for gases and liquids separation (a review). Pet. Chem. 61, 959–976 (2021).Article 

Google Scholar 
Herr, N., Ratzka, J., Lauterbach, L., Lenz, O. & Ansorge-Schumacher, M. B. Stability enhancement of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase by a combination of immobilisation and chemical modification. J. Mol. Catal. B Enzym. 97, 169–174 (2013).Article 

Google Scholar 
Cha, J., Lee, J., Jeon, B. W., Kim, Y. H. & Kwon, I. Real flue gas CO2 hydrogenation to formate by an enzymatic reactor using O2- and CO-tolerant hydrogenase and formate dehydrogenase. Front. Bioeng. Biotechnol. 11, 1265272 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Thompson, M. P. et al. A generic platform for the immobilisation of engineered biocatalysts. Tetrahedron 75, 327–334 (2019).Article 

Google Scholar 
Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl Acad. Sci. Usa. 112, 2337–2342 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Jongkind, E. P. J. et al. Synthesis of chiral amines via a bi‐enzymatic cascade using an ene‐reductase and amine dehydrogenase. ChemCatChem. 14, e202101576 (2022).Resch, V., Seidler, C., Chen, B.-S., Degeling, I. & Hanefeld, U. On the Michael addition of water to α,β‐unsaturated ketones using amino acids. Eur. J. Org. Chem. 2013, 7697–7704 (2013).Article 

Google Scholar 
Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, 2015).Kragl, U., Gygax, D., Ghisalba, O. & Wandrey, C. Enzymatic two‐step synthesis of N‐acetyl‐neuraminic acid in the enzyme membrane reactor. Angew. Chem. Int. Ed. 30, 827–828 (1991).Article 

Google Scholar 
Fryszkowska, A. et al. Asymmetric reduction of activated alkenes by pentaerythritol tetranitrate reductase: specificity and control of stereochemical outcome by reaction optimisation. Adv. Synth. Catal. 351, 2976–2990 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Fu, Y., Castiglione, K. & Weuster-Botz, D. Comparative characterization of novel ene-reductases from cyanobacteria. Biotechnol. Bioeng. 110, 1293–1301 (2013).Article 
PubMed 

Google Scholar 
Zhang, W. et al. The chemo-catalytic racemization of lactic acid enantiomer derived from biomass via keto-enol tautomerization. Ind. Crop. Prod. 193, 116260 (2023).Article 

Google Scholar 
Russell, G. F. & Hills, J. I. Odor differences between enantiomeric isomers. Science 172, 1043–1044 (1971).Article 
PubMed 

Google Scholar 
Gand, M. et al. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination. J. Biotech. 230, 11–18 (2016).Article 

Google Scholar 
Rad, R. et al. A hybrid bioelectrochemical system coupling a zero-gap cell and a methanogenic reactor for carbon dioxide reduction using a wastewater-derived catholyte. Cell Rep. Phys. Sci. 4, 101526 (2023).Article 

Google Scholar 
Baek, G., Rossi, R., Saikaly, P. E. & Logan, B. E. High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design. Water Res. 219, 118597 (2022).Article 
PubMed 

Google Scholar 
Nett, N. et al. A robust and stereocomplementary panel of ene-reductase variants for gram-scale asymmetric hydrogenation. Mol. Catal. 502, 111404 (2021).Article 

Google Scholar 
Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green. Chem. 19, 18–43 (2017).Article 

Google Scholar 
Wu, Y., Paul, C. E. & Hollmann, F. Mirror, mirror on the wall, which is the greenest of them all? A critical comparison of chemo- and biocatalytic oxyfunctionalisation reactions. Green. Carbon 1, 227–241 (2023).Article 

Google Scholar 
Villa, R., Ferrer-Carbonell, C. & Paul, C. E. Biocatalytic reduction of alkenes in micro-aqueous organic solvent catalysed by an immobilised ene reductase. Catal. Sci. Technol. 13, 5530–5535 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Fulmer, G. R. et al. NMR Chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).Article 

Google Scholar 
Gottlieb, H. E., Kotlyar, V. & Nudelman, A. NMR Chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–7515 (1997).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles