Automated customization of large-scale spiking network models to neuronal population activity

Hodgkin, A. L. & Huxley, A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J. Physiol. 116, 449–472 (1952).Article 

Google Scholar 
Marder, E. & Bucher, D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69, 291–316 (2007).Article 

Google Scholar 
Vogels, T. P., Rajan, K. & Abbott, L. F. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).Article 

Google Scholar 
Kass, R. E. et al. Computational neuroscience: mathematical and statistical perspectives. Annu. Rev. Stat. Appl. 5, 183–214 (2018).Article 
MathSciNet 

Google Scholar 
Wang, Xiao-Jing Theory of the multiregional neocortex: large-scale neural dynamics and distributed cognition. Annu. Rev. Neurosci. 45, 533–560 (2022).Article 

Google Scholar 
Yamins, DanielL. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).Article 

Google Scholar 
Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).Article 

Google Scholar 
Buonomano, D. V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009).Article 

Google Scholar 
Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394–1406 (2014).Article 

Google Scholar 
Denève, S. & Machens, C. K. Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382 (2016).Article 

Google Scholar 
Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E. & Doiron, B. The spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114 (2017).Article 

Google Scholar 
DePasquale, B., Sussillo, D. & and Mark M Churchland, L. F. Abbott The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks. Neuron 111, 631–649 (2023).Article 

Google Scholar 
Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009).Article 

Google Scholar 
Stringer, C. et al. Inhibitory control of correlated intrinsic variability in cortical networks. eLife 5, e19695 (2016).Article 

Google Scholar 
Williamson, R. C., Doiron, B., Smith, M. A. & Yu, B. M. Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction. Curr. Opin. Neurobiol. 55, 40–47 (2019).Article 

Google Scholar 
Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015).Article 

Google Scholar 
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).Article 

Google Scholar 
LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).Article 

Google Scholar 
Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82, 011903–011907 (2010).Article 

Google Scholar 
Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neurosci. 15, 1498–1505 (2012).Article 

Google Scholar 
Deco, G. & Hugues, E. Neural network mechanisms underlying stimulus driven variability reduction. PLoS Comput. Biol. 8, e1002395 (2012).Article 
MathSciNet 

Google Scholar 
Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. áté & Miller, K. D. The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 98, 846–860 (2018).Article 

Google Scholar 
Kumar, A., Rotter, S. & Aertsen, A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010).Article 

Google Scholar 
Snyder, A. C., Morais, M. J., Willis, C. M. & Smith, M. A. Global network influences on local functional connectivity. Nat. Neurosci. 18, 736–743 (2015).Article 

Google Scholar 
Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & Josić, Krešimir The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).Article 

Google Scholar 
Huang, C. et al. Circuit models of low-dimensional shared variability in cortical networks. Neuron 101, 337–348 (2019).Article 

Google Scholar 
Billeh, Y. N. et al. Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron 106, 388–403 (2020).Article 

Google Scholar 
Gonçalves, P. J. et al. Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife 9, e56261 (2020).Article 

Google Scholar 
Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).Article 

Google Scholar 
Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).Article 

Google Scholar 
Williamson, R. C. et al. Scaling properties of dimensionality reduction for neural populations and network models. PLoS Comput. Biol. 12, e1005141 (2016).Article 

Google Scholar 
Umakantha, A. et al. Bridging neuronal correlations and dimensionality reduction. Neuron 109, 2740–2754 (2021).Article 

Google Scholar 
Churchland, M. M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).Article 

Google Scholar 
Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).Article 

Google Scholar 
De La Rocha, J., Doiron, B., Shea-Brown, E., Josić, Krešimir & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).Article 

Google Scholar 
Mazzucato, L., Fontanini, A. & La Camera, G. Stimuli reduce the dimensionality of cortical activity. Front. Syst. Neurosci. 10, 11 (2016).Article 

Google Scholar 
Recanatesi, S., Ocker, GabrielKoch, Buice, M. A. & Shea-Brown, E. Dimensionality in recurrent spiking networks: global trends in activity and local origins in connectivity. PLoS Comput. Biol. 15, e1006446 (2019).Article 

Google Scholar 
Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).Article 

Google Scholar 
Brochu, E., Cora, V. M., & De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Preprint at https://arxiv.org/abs/1012.2599 (2010).Smith, M. A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).Article 

Google Scholar 
Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proc. Natl Acad. Sci. USA 114, 394–399 (2017).Article 

Google Scholar 
Snyder, A. C., Yu, B. M. & Smith, M. A. Distinct population codes for attention in the absence and presence of visual stimulation. Nat. Commun. 9, 1–14 (2018).Article 

Google Scholar 
Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).Article 

Google Scholar 
Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).Article 

Google Scholar 
Bittner, S. R. et al. Interrogating theoretical models of neural computation with emergent property inference. eLife 10, e56265 (2021).Article 

Google Scholar 
Friedrich, P., Vella, M., Gulyás, A. I., Freund, T. F. & Káli, S. A flexible, interactive software tool for fitting the parameters of neuronal models. Front. Neuroinform. 8, 63 (2014).Article 

Google Scholar 
Carlson, K. D., Nageswaran, J. M., Dutt, N. & Krichmar, J. L. An efficient automated parameter tuning framework for spiking neural networks. Front. Neurosci. 8, 10 (2014).Article 

Google Scholar 
Van Geit, W. et al. Bluepyopt: leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10, 17 (2016).Article 

Google Scholar 
Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).Article 

Google Scholar 
Murray, J. D. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).Article 

Google Scholar 
Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of population coding across cortex. Nature 548, 92–96 (2017).Article 

Google Scholar 
Garnelo, M. et al. Conditional neural processes. In International Conference on Machine Learning 1704–1713 (PMLR, 2018).Destexhe, A., Contreras, D., Sejnowski, T. J. & Steriade, M. A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol. 72, 803–818 (1994).Article 

Google Scholar 
Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).Article 
MathSciNet 

Google Scholar 
Rabinowitz, N. C., Goris, R. L., Cohen, M. & Simoncelli, E. P. Attention stabilizes the shared gain of v4 populations. eLife 4, e08998 (2015).Article 

Google Scholar 
Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C. & Brunel, N. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23, 11628–11640 (2003).Article 

Google Scholar 
Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005).Article 

Google Scholar 
Hansel, D., Mato, Germán, Meunier, C. & Neltner, L. On numerical simulations of integrate-and-fire neural networks. Neural Comput. 10, 467–483 (1998).Article 

Google Scholar 
Snyder, A. C., Yu, B. M. & Smith, M. A. A stable population code for attention in prefrontal cortex leads a dynamic attention code in visual cortex. J. Neurosci. 41, 9163–9176 (2021).Article 

Google Scholar 
Li, L. & Talwalkar, A. in Uncertainty in Artificial Intelligence (eds Adams, R. P. & Gogate, V.) 367–377 (PMLR, 2020).Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).Article 
MathSciNet 

Google Scholar 
Swersky, K., Snoek, J. & Adams, R. P. Freeze-thaw Bayesian optimization. Preprint at https://arxiv.org/abs/1406.3896 (2014).Gelbart, M. A., Snoek, J. & Adams, R. P. Bayesian optimization with unknown constraints. In Proc. 30th Conference on Uncertainty in Artificial Intelligence 250-259 (AUAI Press, 2014).Hutter, F., Hoos, H. H., Leyton-Brown, K. & Murphy, K. P. An experimental investigation of model-based parameter optimisation: Spo and beyond. In Proc. 11th Annual Conference on Genetic and Evolutionary Computation 271–278 (Association for Computing Machinery, 2009).Yang, GuangyuRobert, Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, Xiao-Jing Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).Article 

Google Scholar 
Snyder, A., Johnston, R. & Smith, M. Utah array recordings from visual cortical area V4 and prefrontal cortex with simultaneous EEG. CMU KiltHub https://doi.org/10.1184/R1/19248827 (2024).Wu, S. Spiking network optimization using population statistics: v1.0.0. Zenodohttps://doi.org/10.5281/zenodo.13218535 (2024).

Hot Topics

Related Articles