Electrical properties determine the liquid flow direction in plasma–liquid interactions

Tendero, C., Tixier, C., Tristant, P., Desmaison, J. & Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta, Part B 61, 2–30 (2006).Article 

Google Scholar 
Foster, J. E. Plasma-based water purification: Challenges and prospects for the future. Phys. Plasmas 24, 055501 (2017).Article 
ADS 

Google Scholar 
Von Woedtke, T., Reuter, S., Masur, K. & Weltmann, K.-D. Plasmas for medicine. Phys. Rep. 530, 291–320 (2013).Article 
ADS 

Google Scholar 
Attri, P., Ishikawa, K., Okumura, T., Koga, K. & Shiratani, M. Plasma agriculture from laboratory to farm: A review. Processes 8, 1002 (2020).Article 
CAS 

Google Scholar 
Bruggeman, P. J. et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 25, 053002 (2016).Article 
ADS 

Google Scholar 
Vanraes, P. & Bogaerts, A. Plasma physics of liquids—a focused review. Appl. Phys. Rev. 5, 031103 (2018).Article 
ADS 

Google Scholar 
Zhou, R. et al. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 53, 303001 (2020).Article 
ADS 
CAS 

Google Scholar 
Thirumdas, R. et al. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 77, 21–31 (2018).Article 
CAS 

Google Scholar 
Yusupov, M. et al. Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. J. Phys. D Appl. Phys. 47, 025205 (2013).Article 
ADS 

Google Scholar 
Mitsugi, F., Kusumegi, S., Nishida, K. & Kawasaki, T. Visualization of plasma-induced liquid flow using KI-starch and PIV. IEEE Trans. Plasma Sci. 49, 9–14 (2020).Article 
ADS 

Google Scholar 
Thagard, S. M., Stratton, G. R., Vasilev, M., Conlon, P. & Bohl, D. An experimental investigation of the liquid flow induced by a pulsed electrical discharge plasma. Plasma Chem. Plasma Process. 38, 719–741 (2018).Article 
CAS 

Google Scholar 
Yang, Z., Kovach, Y. & Foster, J. Visualization and analysis of coupling between plasmas self-organization and plasma-induced fluid circulation in 1 atm dc glows with liquid anode. J. Appl. Phys. 129 (2021).Muñoz-Esparza, D., Buchlin, J.-M., Myrillas, K. & Berger, R. Numerical investigation of impinging gas jets onto deformable liquid layers. Appl. Math. Model. 36, 2687–2700 (2012).Article 
MathSciNet 

Google Scholar 
Hwang, H. Y. & Irons, G. A. A water model study of impinging gas jets on liquid surfaces. Metall. Mater. Trans. B. 43, 302–315 (2012).Article 
CAS 

Google Scholar 
Kawasaki, T., Kamasaki, M., Takeuchi, N. & Mitsugi, F. Effects of initial surfactant concentration on plasma-induced liquid flows. J. Appl. Phys. 130, 243303 (2021).Article 
ADS 
CAS 

Google Scholar 
Taghvaei, H., Kondeti, V. & Bruggeman, P. J. Decomposition of crystal violet by an atmospheric pressure rf plasma jet: The role of radicals, ozone, near-interfacial reactions and convective transport. Plasma Chem. Plasma Process. 39, 729–749 (2019).Article 
CAS 

Google Scholar 
Kawasaki, T., Shen, K., Shi, H., Koga, K. & Shiratani, M. Instant switching control between two types of plasma-driven liquid flows. Jpn. J. Appl. Phys. 62, 060904 (2023).Article 
ADS 

Google Scholar 
Gennes, P.-G., Brochard-Wyart, F., Quéré, D. et al. Capillarity and wetting phenomena: Drops, bubbles, pearls, waves (Springer, 2004).Berendsen, C. W., van Veldhuizen, E. M., Kroesen, G. M. & Darhuber, A. A. Marangoni flows induced by atmospheric-pressure plasma jets. J. Phys. D Appl. Phys. 48, 025203 (2015).Article 
ADS 
CAS 

Google Scholar 
Lai, J., Petrov, V. & Foster, J. E. Understanding plasma-liquid interface instabilities using particle image velocimetry and shadowgraphy imaging methods. IEEE Trans. Plasma Sci. 46, 875–881 (2018).Article 
ADS 
CAS 

Google Scholar 
Vasilev, M., Conlon, P., Bohl, D. & Thagard, S. M. The effect of discharge frequency of a gas-liquid plasma reactor on bulk liquid transport and removal of organic contaminants. Plasma Chem. Plasma Process. 42, 759–783 (2022).Article 
CAS 

Google Scholar 
Shirai, N., Kaneko, T., Takamura, Y. & Sasaki, K. Effect of atmospheric-pressure plasma irradiation on the surface tension of water. J. Phys. D Appl. Phys. 55, 15LT01 (2022).Shaji, M., Rabinovich, A., Surace, M., Sales, C. & Fridman, A. Physical properties of plasma-activated water. Plasma 6, 45–57 (2023).CAS 

Google Scholar 
Wong, K. S., Chew, N. S., Low, M. & Tan, M. K. Plasma-activated water: Physicochemical properties, generation techniques, and applications. Processes 11, 2213 (2023).Article 
CAS 

Google Scholar 
Gelderblom, H., Diddens, C. & Marin, A. Evaporation-driven liquid flow in sessile droplets. Soft Matter 18, 8535–8553 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peng, Y., Li, D., Yang, X., Ma, Z. & Mao, Z. A review on electrohydrodynamic (EHD) pump. Micromachines 14, 321 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Tropea, C., Yarin, A. L., Foss, J. F. et al. Springer handbook of experimental fluid mechanics, vol. 1 (Springer, 2007).Dickenson, A., Walsh, J. & Hasan, M. Electromechanical coupling mechanisms at a plasma-liquid interface. J. Appl. Phys. 129, 213301 (2021).Article 
ADS 
CAS 

Google Scholar 
Alfianto, E., Ikuse, K. & Hamaguchi, S. Global numerical simulation of chemical reactions in phosphate-buffered saline (pbs) exposed to atmospheric-pressure plasmas. Plasma Sources Sci. Technol. 32, 085014 (2023).Article 
ADS 

Google Scholar 
Dubey, K., Sanghi, S., Gupta, A. & Bahga, S. S. Electrokinetic instability due to streamwise conductivity gradients in microchip electrophoresis. J. Fluid Mech. 925, A14 (2021).Article 
ADS 
CAS 

Google Scholar 
Kondeti, V. S. K. & Bruggeman, P. J. The interaction of an atmospheric pressure plasma jet with liquid water: Dimple dynamics and its impact on crystal violet decomposition. J. Phys. D Appl. Phys. 54, 045204 (2020).Article 
ADS 

Google Scholar 
Park, S. et al. Stabilization of liquid instabilities with ionized gas jets. Nature 592, 49–53 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, C., Pei, X. & Lu, X. Measurement of the impact force of a nonequilibrium atmospheric pressure plasma jet on various substrates. J. Appl. Phys. 121, 203305 (2017).Article 
ADS 

Google Scholar 
Levin, Z. & Hobbs, P. V. Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 269, 555–585 (1971).Ekanayake, U. M. et al. Utilization of plasma in water desalination and purification. Desalination 500, 114903 (2021).Article 
CAS 

Google Scholar 
Qasem, N. A., Generous, M. M., Qureshi, B. A. & Zubair, S. M. A comprehensive review of saline water correlations and data: part ii-thermophysical properties. Arab. J. Sci. Eng. 46, 1941–1979 (2021).Article 
CAS 

Google Scholar 
Hausmann, J. N., Traynor, B., Myers, R. J., Driess, M. & Menezes, P. W. The pH of aqueous NaOH/KOH solutions: A critical and non-trivial parameter for electrocatalysis. ACS Energy Lett. 6, 3567–3571 (2021).Article 
CAS 

Google Scholar 
Robinson, S. & Robinson, A. H. Chemical composition of sweat. Physiol. Rev. 34, 202–220 (1954).Article 
CAS 
PubMed 

Google Scholar 
Yerokhin, A., Nie, X., Leyland, A., Matthews, A. & Dowey, S. Plasma electrolysis for surface engineering. Surf. Coating Technol. 122, 73–93 (1999).Article 
CAS 

Google Scholar 
Witzke, M., Rumbach, P., Go, D. B. & Sankaran, R. M. Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions. J. Phys. D Appl. Phys. 45, 442001 (2012).Article 

Google Scholar 
Elvers, B. et al. Ullmann’s encyclopedia of industrial chemistry Vol. 17 (Verlag Chemie Hoboken, NJ, 1991).
Google Scholar 
Dinçer, İ. & Zamfirescu, C. Sustainable hydrogen production (Elsevier, 2016).Sobota, A. et al. Plasma-surface interaction: dielectric and metallic targets and their influence on the electric field profile in a khz ac-driven he plasma jet. Plasma Sources Sci. Technol. 28, 045003 (2019).Article 
ADS 
CAS 

Google Scholar 
Kovačević, V. V. et al. The effect of liquid target on a nonthermal plasma jet-imaging, electric fields, visualization of gas flow and optical emission spectroscopy. J. Phys. D Appl. Phys. 51, 065202 (2018).Article 
ADS 

Google Scholar 
Guaitella, O. & Sobota, A. The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface. J. Phys. D Appl. Phys. 48, 255202 (2015).Article 
ADS 

Google Scholar 
Sobota, A., Guaitella, O. & Rousseau, A. The influence of the geometry and electrical characteristics on the formation of the atmospheric pressure plasma jet. Plasma Sour. Sci. Technol. 23, 025016 (2014).Article 
ADS 
CAS 

Google Scholar 
Adrian, R. J. & Westerweel, J. Particle image velocimetry (Cambridge university press, 2011).Spalding, D. B. et al. A single formula for the law of the wall. J. Appl. Mech. 28, 455–458 (1961).Article 
ADS 

Google Scholar 
Bradshaw, P. & Huang, G. P. The law of the wall in turbulent flow. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 451, 165–188 (1995).Pappas, D. et al. Surface modification of polyamide fibers and films using atmospheric plasmas. Surf. Coating Technol. 201, 4384–4388 (2006).Article 
CAS 

Google Scholar 
Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9, 12 (2021).Article 

Google Scholar 
Stamhuis, E. & Thielicke, W. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, 30 (2014).
Google Scholar 
International standard water quality – determination of electrical conductivity. Standard ISO 7888, International Organization for Standardization (1985).

Hot Topics

Related Articles