Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation

Ruiz-Ojeda, F. J., Rupérez, A. I., Gomez-Llorente, C., Gil, A. & Aguilera, C. M. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review. Int. J. Mol. Sci. 17, 1040 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, X. & Li, H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front Endocrinol. (Lausanne) 12, 706978 (2021).Article 
PubMed 

Google Scholar 
Cristancho, A. G. & Lazar, M. A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evseeva, M. N., Balashova, M. S., Kulebyakin, K. Y. & Rubtsov, Y. P. Adipocyte biology from the perspective of in vivo research: Review of key transcription factors. Int. J. Mol. Sci. 23, 322 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, P. et al. LncRNA-mediated adipogenesis in different adipocytes. Int. J. Mol. Sci. 23, 7488 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sufianov, A. et al. The role of long non-coding RNAs in the development of adipose cells. Noncoding RNA Res. 8, 255–262 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ding, C. et al. De novo reconstruction of human adipose transcriptome reveals conserved lncRNAs as regulators of brown adipogenesis. Nat. Commun. 9, 1–14 (2018).Article 

Google Scholar 
Xiao, T. et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPα. Stem Cell Rep. 16, 1006 (2021).Article 

Google Scholar 
Fan, L., Xu, H., Li, D., Li, H. & Lu, D. A novel long noncoding RNA, AC092834.1, regulates the adipogenic differentiation of human adipose-derived mesenchymal stem cells via the DKK1/Wnt/β-catenin signaling pathway. Biochem. Biophys. Res. Commun. 525, 747–754 (2020).Article 
CAS 
PubMed 

Google Scholar 
Rey, F. et al. Transcriptional characterization of subcutaneous adipose tissue in obesity affected women highlights metabolic dysfunction and implications for lncRNAs. Genomics 113, 3919–3934 (2021).Article 
CAS 
PubMed 

Google Scholar 
Luan, A. et al. RNA sequencing for identification of differentially expressed non-coding transcripts during adipogenic differentiation of adipose-derived stromal cells. Plast. Reconstr. Surg. 136, 752 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. & Tian, B. The emerging theme of 3’UTR mRNA isoform regulation in reprogramming of cell metabolism. Biochem. Soc. Trans. 51, 1111–1119 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature termination: A forgotten mechanism. Trends Genet. 35, 553 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gallicchio, L., Olivares, G. H., Berry, C. W. & Fuller, M. T. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol. 20, 908–925 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mitschka, S. & Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779–796 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoque, M. et al. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods 10, 133–139 (2013).Article 
CAS 
PubMed 

Google Scholar 
Cui, J. et al. Shortening of HO1 3′UTRs by alternative polyadenylation suppresses adipogenesis in 3T3-L1. J. Agric. Food Chem.s 69, 8049 (2021).
Google Scholar 
Spangenberg, L., Correa, A., Dallagiovanna, B. & Naya, H. Role of alternative polyadenylation during adipogenic differentiation: An in silico approach. PLoS ONE 8, e75578 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Naing, Y. T. & Sun, L. The role of splicing factors in adipogenesis and thermogenesis. Mol. Cells 46, 268 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carter, G. et al. Dysregulated alternative splicing pattern of PKCδ during differentiation of human preadipocytes represents distinct differences between lean and obese adipocytes. ISRN Obes. 2013, 1–9 (2013).Article 

Google Scholar 
Aprile, M. et al. PPARγΔ5, a naturally occurring dominant-negative splice isoform, impairs PPARγ function and adipocyte differentiation. Cell Rep. 25, 1577-1592.e6 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yi, X., Yang, Y., Wu, P., Xu, X. & Li, W. Alternative splicing events during adipogenesis from hMSCs. J. Cell Physiol. 235, 304–316 (2020).Article 
CAS 
PubMed 

Google Scholar 
Potolitsyna, E., Hazell Pickering, S., Germier, T., Collas, P. & Briand, N. Long non-coding RNA HOTAIR regulates cytoskeleton remodeling and lipid storage capacity during adipogenesis. Sci. Rep. 12, 10157 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A. 111, E5593–E5601 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

Google Scholar 
Andrews, S. FastQC: A quality control tool for high throughput sequence data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Sherman, B. T. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Safran, M. et al. The GeneCards suite. Pract. Guide Life Sci. Databases 27, 56. https://doi.org/10.1007/978-981-16-5812-9_2/FIGURES/8 (2022).Article 

Google Scholar 
Castellá, M. et al. Adipose tissue plasticity in pheochromocytoma patients suggests a role of the splicing machinery in human adipose browning. iScience 26, 106847 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, R., Nambiar, R., Zheng, D. & Tian, B. PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res. 46, D315–D319 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. & Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 48, 127–131 (2019).Article 
CAS 

Google Scholar 
Liu, W. & Wang, X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20, 1–10 (2019).Article 

Google Scholar 
Paz, I., Argoetti, A., Cohen, N., Even, N. & Mandel-Gutfreund, Y. RBPmap: A tool for mapping and predicting the binding sites of rna-binding proteins considering the motif environment. Methods Mol. Biol. 2404, 53–65 (2022).Article 
CAS 
PubMed 

Google Scholar 
Paz, I., Kosti, I., Ares, M., Cline, M. & Mandel-Gutfreund, Y. RBPmap: A web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 42, W361–W367 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, W. et al. POSTAR3: An updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res. 50, D287–D294 (2022).Article 
MathSciNet 
CAS 
PubMed 

Google Scholar 
Park, J. W., Jung, S., Rouchka, E. C., Tseng, Y.-T. & Xing, Y. rMAPS: RNA map analysis and plotting server for alternative exon regulation. Nucleic Acids Res. 44, 333–338 (2016).Article 

Google Scholar 
Hwang, J. Y. et al. rMAPS2: An update of the RNA map analysis and plotting server for alternative splicing regulation. Nucleic Acids Res. 48, W300–W306 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. Dplyr: A Grammar of data manipulation. https://dplyr.tidyverse.org (2023).Hadley Wickham. Ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. https://bioconductor.org/packages/EnhancedVolcano (2023) https://doi.org/10.18129/B9.bioc.EnhancedVolcano.Min, S. H. & Zhou, J. Smplot: An R package for easy and elegant data visualization. Front Genet. 12, 802894 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Mathur, N. et al. Human visceral and subcutaneous adipose stem and progenitor cells retain depot-specific adipogenic properties during obesity. Front Cell Dev. Biol. 10, 983899 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Norreen-Thorsen, M. et al. A human adipose tissue cell-type transcriptome atlas. Cell Rep. 40, 111046 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cai, R. et al. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating Adiponectin mRNA translation. Biochim. et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1863, 420–432 (2018).CAS 

Google Scholar 
Ou, Y. et al. Targeting antisense lncRNA PRKAG2-AS1, as a therapeutic target, suppresses malignant behaviors of hepatocellular carcinoma cells. Front Med. (Lausanne) 8, 649279 (2021).Article 
PubMed 

Google Scholar 
Zhang, F. et al. LINC00673 silencing inhibits cell migration and invasion by suppressing PI3K/AKT signaling in glioma. Neuroreport 29, 718–722 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ji, Z. et al. C-Myc-activated long non-coding RNA LINC01050 promotes gastric cancer growth and metastasis by sponging miR-7161-3p to regulate SPZ1 expression. J. Exp. Clin. Cancer Res. 40, 351 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cen, D., Huang, H., Yang, L., Guo, K. & Zhang, J. Long noncoding RNA STXBP5-AS1 inhibits cell proliferation, migration, and invasion through inhibiting the PI3K/AKT signaling pathway in gastric cancer cells. Onco Targets Ther. 12, 1929–1936 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shao, S., Wang, C., Wang, S., Zhang, H. & Zhang, Y. LncRNA STXBP5-AS1 suppressed cervical cancer progression via targeting miR-96-5p/PTEN axis. Biomed. Pharmacother. 117, 109082 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, W. et al. LINC01088 inhibits tumorigenesis of ovarian epithelial cells by targeting miR-24-1-5p. Sci. Rep. 8, 1–10 (2018).ADS 

Google Scholar 
Zhang, Q. et al. LINC01060 knockdown inhibits osteosarcoma cell malignant behaviors in vitro and tumor growth and metastasis in vivo through the PI3K/Akt signaling. Cancer Biol. Ther. 24, 2198904 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Marquez, M. P. et al. The role of cellular proliferation in adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Stem Cells Dev. 26, 1578 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marcon, B. H. et al. Cell cycle genes are downregulated after adipogenic triggering in human adipose tissue-derived stem cells by regulation of mRNA abundance. Sci. Rep. 9, 1–10 (2019).Article 
CAS 

Google Scholar 
Thunen, A., La Placa, D., Zhang, Z. & Shively, J. E. Role of lncRNA LIPE-AS1 in adipogenesis. Adipocyte 11, 11 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, K., Xie, S. & Jin, W. Crucial lncRNAs associated with adipocyte differentiation from human adiposederived stem cells based on co-expression and ceRNA network analyses. PeerJ 2019, e7544 (2019).Article 

Google Scholar 
Wang, Y., Cheng, Y., Yang, Q., Kuang, L. & Liu, G. Overexpression of FOXD2-AS1 enhances proliferation and impairs differentiation of glioma stem cells by activating the NOTCH pathway via TAF-1. J. Cell Mol. Med. 26, 2620 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao, C., Zhou, Y., Li, M., Xia, Y. & Peng, W. LINC00968 promotes osteogenic differentiation in vitro and bone formation in vivo via regulation of miR-3658/RUNX2. Differentiation 116, 1–8 (2020).Article 
CAS 
PubMed 

Google Scholar 
Douka, K. et al. Cytoplasmic long noncoding rnas are differentially regulated and translated during human neuronal differentiation. RNA 27, 1082–1101 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boulberdaa, M. et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol. Therapy 24, 978 (2016).Article 
CAS 

Google Scholar 
Pan, M. et al. The effect and mechanism of LINC00663 on the biological behavior of glioma. Neurochem. Res. 46, 1737–1746 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fei, Y., Li, Y. & Chen, F. LncRNA-IQCH-AS1 sensitizes thyroid cancer cells to doxorubicin via modulating the miR-196a-5p/PPP2R1B signalling pathway. J. Chemother 35, 250–258 (2023).Article 
CAS 
PubMed 

Google Scholar 
Song, H. et al. A novel biomarker NIFK-AS1 promotes hepatocellular carcinoma cell cycle progression through interaction with SRSF10. J. Gastrointest. Oncol. 13, 1927–1941 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Xin, Y. et al. SLC8A1 antisense RNA 1 suppresses papillary thyroid cancer malignant progression via the FUS RNA binding protein (FUS)/NUMB like endocytic adaptor protein (Numbl) axis. Bioengineered 13, 12572–12582 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J. et al. Docetaxel resistance-derived LINC01085 contributes to the immunotherapy of hormone-independent prostate cancer by activating the STING/MAVS signaling pathway. Cancer Lett. 545, 215829 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhu, X. et al. m6A-mediated upregulation of LINC01003 regulates cell migration by targeting the CAV1/FAK signaling pathway in glioma. Biol. Direct 18, 1–13 (2023).Article 
CAS 

Google Scholar 
Li, L., Gan, Y. P. & Peng, H. RAMP2-AS1 inhibits CXCL11 expression to suppress malignant phenotype of breast cancer by recruiting DNMT1 and DNMT3B. Exp. Cell Res. 416, 113139 (2022).Article 
CAS 
PubMed 

Google Scholar 
Huang, S. K. et al. Overexpression of LINC00673 promotes the proliferation of cervical cancer cells. Front Oncol. 11, 669739 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, W. et al. LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis. Pathol. Res. Pract. 243, 154377 (2023).Article 
CAS 
PubMed 

Google Scholar 
Peng, G., Yan, J., Shi, P. & Li, H. LINC01140 hinders the development of breast cancer through targeting miR-200b-3p to downregulate DMD. Cell Transplant. 32, 1–14 (2023).Article 

Google Scholar 
Chen, Y. et al. Long non-coding RNA LINC00312 regulates breast cancer progression through the miR-9/CDH1 axis. Mol. Med. Rep. 21, 1296–1303 (2020).CAS 
PubMed 

Google Scholar 
Xu, B. et al. Overexpression of microRNA-9 inhibits 3T3-L1 cell adipogenesis by targeting PNPLA3 via activation of AMPK. Gene 730, 144260 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, G., Wang, C., Wang, Y., Xu, B. & Zhang, W. LINC00312 represses proliferation and metastasis of colorectal cancer cells by regulation of miR-21. J. Cell Mol. Med. 22, 5565 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kurylowicz, A. MicroRNAs in human adipose tissue physiology and dysfunction. Cells 10, 3342 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lhamyani, S. et al. MiR-21 mimic blocks obesity in mice: A novel therapeutic option. Mol. Therapy Nucleic Acid 26, 401–416 (2021).Article 
CAS 

Google Scholar 
Zheng, Y., Chen, Z., Zhou, Z., Xu, X. & Yang, H. Silencing of long non-coding RNA LINC00607 prevents tumor proliferation of osteosarcoma by acting as a sponge of miR-607 to downregulate E2F6. Front Oncol. 10, 584452 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, T. et al. Cantharidin induces apoptosis of human triple negative breast cancer cells through mir-607-mediated downregulation of EGFR. J. Transl. Med. 21, 597 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Latorre, J. et al. The relevance of EGFR, ErbB receptors and neuregulins in human adipocytes and adipose tissue in obesity. Biomed. Pharmacother. 156, 113972 (2022).Article 
CAS 
PubMed 

Google Scholar 
Pan, J., Kothan, S., Moe Moe, A. T. & Huang, K. Dysfunction of insulin-AKT-UCP1 signalling inhibits transdifferentiation of human and mouse white preadipocytes into brown-like adipocytes. Adipocyte 11, 213 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jia, J. et al. LncRNA TYMSOS promotes epithelial-mesenchymal transition and metastasis in thyroid carcinoma through regulating MARCKSL1 and activating the PI3K/Akt signaling pathway. Crit. Rev.&Trade Eukaryot. Gene Expr. 33, 1–14 (2023).Article 

Google Scholar 
Gu, Y. et al. TYMSOS drives the proliferation, migration, and invasion of gastric cancer cells by regulating ZNF703 via sponging miR-4739. Cell Biol. Int. 45, 1710–1719 (2021).Article 
CAS 
PubMed 

Google Scholar 
Elsafadi, M. et al. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Res. 20, 94–104 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yuan, Y. et al. FOXM1/lncRNA TYMSOS/miR-214-3p–mediated high expression of NCAPG correlates with poor prognosis and cell proliferation in non–small cell lung carcinoma. Front Mol. Biosci. 8, 785767 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Xi, F. X. et al. MicroRNA-214-3p targeting Ctnnb1 promotes 3T3-L1 preadipocyte differentiation by interfering with the Wnt/β-Catenin signaling pathway. Int. J. Mol. Sci. 20, 1816 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Flowers, M. T. & Ntambi, J. M. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 19, 248–256 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, Q. et al. Role of ACSL5 in fatty acid metabolism. Heliyon 9, e13316 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X. et al. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed. Pharmacother. 164, 114929 (2023).Article 
CAS 
PubMed 

Google Scholar 
El Ouarrat, D. et al. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metab. 31, 162 (2020).Article 
PubMed 

Google Scholar 
Chen, J. et al. E2F1 regulates adipocyte differentiation and adipogenesis by activating ICAT. Cells 9, 1024 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sekine, Y. et al. HADHB, a fatty acid beta-oxidation enzyme, is a potential prognostic predictor in malignant lymphoma. Pathology 54, 286–293 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ru, W. et al. Non-coding RNAs and adipogenesis. Int. J. Mol. Sci. 24, 9978 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X., Price, N. L. & Fernández-Hernando, C. Non-coding RNAs in lipid metabolism. Vascul. Pharmacol. 114, 93–102 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ortega, F. J. et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 5, e9022 (2010).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ouyang, D. et al. MiR-181a-5p regulates 3T3-L1 cell adipogenesis by targeting Smad7 and Tcf7l2. Acta Biochim. Biophys. Sin. 48, 1034–1041 (2016).Article 
CAS 
PubMed 

Google Scholar 
Xu, J., Zhang, L., Shu, G. & Wang, B. microRNA-16–5p promotes 3T3-L1 adipocyte differentiation through regulating EPT1. Biochem. Biophys. Res. Commun. 514, 1251–1256 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wei, L. M. et al. MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance. Sci. Rep. 10, 1–10 (2020).Article 

Google Scholar 
Shen, L. et al. MicroRNA-23a regulates 3T3-L1 adipocyte differentiation. Gene 575, 761–764 (2016).Article 
CAS 
PubMed 

Google Scholar 
You, L. et al. The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program. Endocr. Connect 9, 457 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saha, P. K. et al. Browning and beiging of adipose tissue: its role in the regulation of energy homeostasis and as a potential target for alleviating metabolic diseases: miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am. J. Physiol. Endocrinol. Metab. 319, E667 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Q. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl. Acad. Sci. U. S. A. 105, 2889–2894 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-β/SMAD2 signaling pathway. Aging Dis. 9, 1058 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Chao, Y. et al. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci. 11, 1–16 (2021).Article 

Google Scholar 
Zhang, P. et al. RNA-Binding proteins in the regulation of adipogenesis and adipose function. Cells 11, 2357 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. et al. Integrative analyses of mRNA expression profile reveal the involvement of IGF2BP1 in chicken adipogenesis. Int. J. Mol. Sci. 20, 2923 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhan, P. et al. NCAPG2 promotes tumour proliferation by regulating G2/M phase and associates with poor prognosis in lung adenocarcinoma. J. Cell Mol. Med. 21, 665 (2017).Article 
CAS 
PubMed 

Google Scholar 
Tao, Q. et al. The roles of the cell division cycle-associated gene family in hepatocellular carcinoma. J. Gastrointest. Oncol. 12, 781–794 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
DePamphilis, M. L. The ‘ORC cycle’: A novel pathway for regulating eukaryotic DNA replication. Gene 310, 1–15 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kim, J. et al. Regulation of brown and white adipocyte transcriptome by the transcriptional coactivator NT-PGC-1α. PLoS ONE 11, 0159990 (2016).
Google Scholar 
Zhou, L. et al. Fatty acid oxidation mediated by malonyl-CoA decarboxylase represses renal cell carcinoma progression. Cancer Res. 83, 3920–3939 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsay, A. & Wang, J. C. The role of PIK3R1 in metabolic function and insulin sensitivity. Int. J. Mol. Sci. 24, 12665 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jia, Q. et al. HNRNPA1-mediated 3’ UTR length changes of HN1 contributes to cancer- and senescence-associated phenotypes. Aging 11, 4407–4437 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gruber, A. J. et al. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–1159 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ruiz-Ojeda, F. J., Méndez-Gutiérrez, A., Aguilera, C. M. & Plaza-Díaz, J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int. J. Mol. Sci. 20, 4888 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hasegawa, K. et al. Regulation of de novo lipid synthesis by the small GTPase Rac1 in the adipogenic differentiation of progenitor cells from mouse white adipose tissue. Int. J. Mol. Sci. 24, 4608 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pasarica, M. et al. Adipose tissue collagen VI in obesity. J. Clin. Endocrinol. Metab 94, 5155 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thorsen, K. et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell Proteomics 7, 1214–1224 (2008).Article 
MathSciNet 
CAS 
PubMed 

Google Scholar 
Arafat, H. et al. Tumor-specific expression and alternative splicing of the COL6A3 gene in pancreatic cancer. Surgery 150, 306–315 (2011).Article 
PubMed 

Google Scholar 
Tang, X. et al. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARγ, adipogenesis, and insulin-responsive hexose transport. Proc. Natl. Acad. Sci. U. S. A. 103, 2087 (2006).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peng, H. Y. et al. RBM4A-SRSF3-MAP4K4 splicing cascade constitutes a molecular mechanism for regulating brown adipogenesis. Int. J. Mol. Sci. 19, 2646 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bouzakri, K. & Zierath, J. R. MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-alpha-induced insulin resistance. J. Biol. Chem. 282, 7783–7789 (2007).Article 
CAS 
PubMed 

Google Scholar 
Spada, S., Tocci, A., Di Modugno, F. & Nisticò, P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: From structural and functional features to clinical practice in oncology. J. Exp. Clin. Cancer Res. 40, 1–14 (2021).Article 

Google Scholar 
Berger, E. et al. Pathways commonly dysregulated in mouse and human obese adipose tissue: FAT/CD36 modulates differentiation and lipogenesis. Adipocyte 4, 161 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lake, R. J., Tsai, P.-F., Choi, I., Won, K.-J. & Fan, H.-Y. RBPJ, the major transcriptional effector of notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet 10, 1004204 (2014).Article 

Google Scholar 
Shan, T., Liu, J., Wu, W., Xu, Z. & Wang, Y. Roles of notch signaling in adipocyte progenitor cells and mature adipocytes. J. Cell. Physiol. 232, 1258–1261 (2017).Article 
CAS 
PubMed 

Google Scholar 
Liu, M. C., Logan, H. & Newman, J. J. Distinct roles for Notch1 and Notch3 in human adipose-derived stem/stromal cell adipogenesis. Mol. Biol. Rep. 47, 8439–8450 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jacob, A. G. & Smith, C. W. J. Intron retention as a component of regulated gene expression programs. Hum. Genet. 136, 1043 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Valacca, C. et al. Sam68 regulates EMT through alternative splicing–activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J. Cell Biol. 191, 87 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, J. C. Impacts of alternative splicing events on the differentiation of adipocytes. Int. J. Mol. Sci. 16, 22169 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schirinzi, V., Poli, C., Berteotti, C. & Leone, A. Browning of adipocytes: A potential therapeutic approach to obesity. Nutrients 15, 2229 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roth, C. L., Molica, F., Kwak, B. R., Alvarez-Llamas, G. & Martin-Lorenzo, M. Browning of white adipose tissue as a therapeutic tool in the fight against atherosclerosis. Metabolites 11, 319 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anderson, W. D. et al. Sex differences in human adipose tissue gene expression and genetic regulation involve adipogenesis. Genome Res. 30, 1379–1392 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Divoux, A. et al. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity 22, 1781–1785 (2014).Article 
CAS 
PubMed 

Google Scholar 
Liu, S. et al. Potential key factors involved in regulating adipocyte dedifferentiation. J. Cell Physiol. 237, 1639–1647 (2022).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles