Longitudinal associations of an exposome score with serum metabolites from childhood to adolescence

Poursafa, P., Mansourian, M., Motlagh, M.-E., Ardalan, G. & Kelishadi, R. Is air quality index associated with cardiometabolic risk factors in adolescents? The CASPIAN-III Study. Environ. Res. 134, 105–109 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fleisch, A. F. et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr. Obes. 12, 48–57 (2017).Article 
CAS 
PubMed 

Google Scholar 
Huang, M. et al. Effects of ambient air pollution on blood pressure among children and adolescents: a systematic review and meta-analysis. J. Am. Heart Assoc. 10, e017734 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Siddiqui, N. Z., Nguyen, A. N., Santos, S. & Voortman, T. Diet quality and cardiometabolic health in childhood: the Generation R Study. Eur. J. Nutr. 61, 729–736 (2022).Article 
PubMed 

Google Scholar 
Funtikova, A. N., Navarro, E., Bawaked, R. A., Fíto, M. & Schröder, H. Impact of diet on cardiometabolic health in children and adolescents. Nutr. J. 14, 1–11 (2015).Article 

Google Scholar 
Verswijveren, S. J. J. M. et al. Associations between activity patterns and cardio-metabolic risk factors in children and adolescents: a systematic review. PLoS ONE 13, e0201947 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Mauderly, J. L. & Samet, J. M. Is there evidence for synergy among air pollutants in causing health effects? Environ. Health Perspect. 117, 1–6 (2009).Article 
CAS 
PubMed 

Google Scholar 
Lagunas-Rangel, F. A. et al. Role of the synergistic interactions of environmental pollutants in the development of cancer. GeoHealth 6, e2021GH000552 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Vrijheid, M. The exposome: a new paradigm to study the impact of environment on health. Thorax 69, 876–878 (2014).Article 
PubMed 

Google Scholar 
Strak, M. et al. Associations between lifestyle and air pollution exposure: potential for confounding in large administrative data cohorts. Environ. Res. 156, 364–373 (2017).Article 
CAS 
PubMed 

Google Scholar 
Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).Article 
CAS 
PubMed 

Google Scholar 
Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 72, 1307s–1315s (2000).Chen, W., Srinivasan, S. R., Li, S., Xu, J. & Berenson, G. S. Clustering of long-term trends in metabolic syndrome variables from childhood to adulthood in blacks and whites: the Bogalusa Heart Study. Am. J. Epidemiol. 166, 527–533 (2007).Article 
PubMed 

Google Scholar 
Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).Article 
CAS 

Google Scholar 
Siroux, V., Agier, L. & Slama, R. The exposome concept: a challenge and a potential driver for environmental health research. Eur. Respir. Rev. 25, 124–129 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Slama, R. & Vrijheid, M. Some challenges of studies aiming to relate the Exposome to human health. Occup. Environ. Med. 72, 383–384 (2015).Article 
PubMed 

Google Scholar 
Stavnsbo, M. et al. Reference values for cardiometabolic risk scores in children and adolescents: suggesting a common standard. Atherosclerosis 278, 299–306 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lloyd-Jones, D. M. et al. Life’s essential 8: updating and enhancing the American Heart Association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation 146, e18–e43 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Y. et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 138, 345–355 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Trichopoulou, A., Costacou, T., Bamia, C. & Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 348, 2599–2608 (2003).Article 
PubMed 

Google Scholar 
Kanerva, N., Kaartinen, N. E., Schwab, U., Lahti-Koski, M. & Männistö, S. The Baltic Sea Diet Score: a tool for assessing healthy eating in Nordic countries. Public Health Nutr. 17, 1697–1705 (2014).Article 
PubMed 

Google Scholar 
Bloemsma, L. D. et al. Green space, air pollution, traffic noise and cardiometabolic health in adolescents: the PIAMA birth cohort. Environ. Int. 131, 104991 (2019).Article 
CAS 
PubMed 

Google Scholar 
Shi, L., Morrison, J. A., Wiecha, J., Horton, M. & Hayman, L. L. Healthy lifestyle factors associated with reduced cardiometabolic risk. Br. J. Nutr. 105, 747–754 (2011).Article 
CAS 
PubMed 

Google Scholar 
Bawaked, R. A. et al. Impact of lifestyle behaviors in early childhood on obesity and cardiometabolic risk in children: results from the Spanish INMA birth cohort study. Pediatr. Obes. 15, e12590 (2020).Article 
PubMed 

Google Scholar 
Amin, A. M. The metabolic signatures of cardiometabolic diseases: does the shared metabotype offer new therapeutic targets? Lifestyle Med. 2, e25 (2021).Article 

Google Scholar 
Hivert, M. F. et al. Metabolomics in the developmental origins of obesity and its cardiometabolic consequences. J. Dev. Orig. Health Dis. 6, 65–78 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Scola, L. et al. On the road to accurate biomarkers for cardiometabolic diseases by integrating precision and gender medicine approaches. Int. J. Mol. Sci. 20, 6015 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, P. et al. Defining the scope of exposome studies and research needs from a multidisciplinary perspective. Environ. Sci. Technol. Lett. 8, 839–852 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L. et al. Study on toxicity effects of environmental pollutants based on metabolomics: a review. Chemosphere 286, 131815 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liang, D. et al. A state-of-the-science review on high-resolution metabolomics application in air pollution health research: current progress, analytical challenges, and recommendations for future direction. Environ. Health Perspect. 131, 056002 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kelly, R. S., Kelly, M. P. & Kelly, P. Metabolomics, physical activity, exercise and health: a review of the current evidence. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1866, 165936 (2020).Article 
CAS 

Google Scholar 
Khoramipour, K. et al. Metabolomics in exercise and sports: a systematic review. Sports Med. 52, 547–583 (2022).Article 
PubMed 

Google Scholar 
Andraos, S. et al. Characterizing patterns of dietary exposure using metabolomic profiles of human biospecimens: a systematic review. Nutr. Rev. 80, 699–708 (2022).Article 
PubMed 

Google Scholar 
Kortesniemi, M. et al. Nutritional metabolomics: recent developments and future needs. Curr. Opin. Chem. Biol. 77, 102400 (2023).Article 
CAS 
PubMed 

Google Scholar 
Humer, E., Pieh, C. & Brandmayr, G. Metabolomics in sleep, insomnia and sleep apnea. Int. J. Mol. Sci. 21, 7244 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review. Eur. Resp. Rev. 30, 200220 (2021).Article 

Google Scholar 
Robinson, O. et al. Metabolic profiles of socio-economic position: a multi-cohort analysis. Int. J. Epidemiol. 50, 768–782 (2021).Article 
PubMed 

Google Scholar 
Kaspy, M. S., Semnani-Azad, Z., Malik, V. S., Jenkins, D. J. A. & Hanley, A. J. Metabolomic profile of combined healthy lifestyle behaviours in humans: a systematic review. Proteomics 22, 2100388 (2022).Article 
CAS 

Google Scholar 
Pan, Z. & Raftery, D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem. 387, 525–527 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bhinderwala, F., Wase, N., DiRusso, C. & Powers, R. Combining mass spectrometry and NMR improves metabolite detection and annotation. J. Proteome Res. 17, 4017–4022 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marshall, D. D. & Powers, R. Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 100, 1–16 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eichelmann, F. et al. Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation. Circulation 146, 21–35 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Szczerbinski, L. et al. Untargeted metabolomics analysis of the serum metabolic signature of childhood obesity. Nutrients 14, 214 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reddan, J. M., White, D. J., Macpherson, H., Scholey, A. & Pipingas, A. Glycerophospholipid supplementation as a potential intervention for supporting cerebral structure in older adults. Front. Aging Neurosci. 10, 49 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Q. et al. Comprehensive metabolic profiling of inflammation indicated key roles of glycerophospholipid and arginine metabolism in coronary artery disease. Front. Immunol. 13, 829425 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Farooqui, A. A., Horrocks, L. A. & Farooqui, T. Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101, 577–599 (2007).Article 
CAS 
PubMed 

Google Scholar 
González Hernández, M. A., Canfora, E. E., Jocken, J. W. E. & Blaak, E. E. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11, 1943 (2019).Article 
PubMed Central 

Google Scholar 
Marques, F. Z. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135, 964–977 (2017).Article 
CAS 
PubMed 

Google Scholar 
Soliman, M. L., Smith, M. D., Houdek, H. M. & Rosenberger, T. A. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J. Neuroinflammation 9, 1–14 (2012).Article 
CAS 

Google Scholar 
Connelly, M. A., Otvos, J. D., Shalaurova, I., Playford, M. P. & Mehta, N. N. GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J. Transl. Med. 15, 219 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ballout, R. A. & Remaley, A. T. GlycA: a new biomarker for systemic inflammation and cardiovascular disease (CVD) risk assessment. J. Lab Precis Med. 5, 17 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Levine, J. A. et al. Associations of GlycA and high-sensitivity C-reactive protein with measures of lipolysis in adults with obesity. J. Clin. Lipidol. 14, 667–674 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Chiesa, S. T. et al. Glycoprotein acetyls: a novel inflammatory biomarker of early cardiovascular risk in the young. J. Am. Heart Assoc. 11, e024380 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ojanen, X. et al. Towards early risk biomarkers: serum metabolic signature in childhood predicts cardio-metabolic risk in adulthood. eBioMedicine 72, 103611 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Seah, J. Y. H. et al. Circulating metabolic biomarkers are consistently associated with type 2 diabetes risk in Asian and European populations. J. Clin. Endocrinol. Metab. 107, e2751–e2761 (2022).Article 
PubMed 

Google Scholar 
Feingold, K. R. & Grunfeld, C. The effect of inflammation and infection on lipids and lipoproteins. In Endotext (eds Feingold, K. R. et al.) (MDText.com, Inc., South Dartmouth, MA, 2000).Muramoto, G. et al. Lipid profiles of children and adolescents with inflammatory response in a paediatric emergency department. Ann. Med. 48, 323–329 (2016).Article 
CAS 
PubMed 

Google Scholar 
Daneshzad, E., Rostami, S., Aghamahdi, F., Mahdavi-Gorabi, A. & Qorbani, M. Association of cardiometabolic risk factors with insulin resistance in overweight and obese children. BMC Endocr. Disord. 22, 1–8 (2022).Article 

Google Scholar 
Tonouchi, R. et al. Subclass distribution of low-density lipoprotein triglyceride and the clustering of metabolic syndrome components in Japanese children. Pediatr. Int. 63, 664–670 (2021).Article 
CAS 
PubMed 

Google Scholar 
Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N. Engl. J. Med. 338, 1650–1656 (1998).Article 
CAS 
PubMed 

Google Scholar 
Liu, J. et al. Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am. J. Cardiol. 98, 1363–1368 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ren, J. et al. Long-term coronary heart disease risk associated with very-low-density lipoprotein cholesterol in Chinese: the results of a 15-Year Chinese Multi-Provincial Cohort Study (CMCS). Atherosclerosis 211, 327–332 (2010).Article 
CAS 
PubMed 

Google Scholar 
Gil-Redondo, R. et al. MetSCORE: a molecular metric to evaluate the risk of metabolic syndrome based on serum NMR metabolomics. https://doi.org/10.2139/ssrn.4625798 (2023).Cirulli, E. T. et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 29, 488–500.e2 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Connor, C. et al. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol. Biosyst. 6, 909–921 (2010).Article 
CAS 
PubMed 

Google Scholar 
Yousri, N. A. et al. A systems view of type 2 diabetes-associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic control. Diabetologia 58, 1855–1867 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeng, F., Sherry, J. P. & Bols, N. C. Use of the rainbow trout cell lines, RTgill-W1 and RTL-W1 to evaluate the toxic potential of benzotriazoles. Ecotoxicol. Environ. Saf. 124, 315–323 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zeng, F., Sherry, J. P. & Bols, N. C. Evaluating the toxic potential of benzothiazoles with the rainbow trout cell lines, RTgill-W1 and RTL-W1. Chemosphere 155, 308–318 (2016).Article 
CAS 
PubMed 

Google Scholar 
Steven, S. et al. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid. Med. Cell. Longev. 2019, e7092151 (2019).Article 

Google Scholar 
Sun, Y., Rawish, E., Nording, H. M. & Langer, H. F. Inflammation in metabolic and cardiovascular disorders—role of oxidative stress. Life 11, 672 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2054–2070 (2018).Article 
CAS 
PubMed 

Google Scholar 
Noguerol, T.-N. et al. Evaluating the interactions of vertebrate receptors with persistent pollutants and antifouling pesticides using recombinant yeast assays. Anal. Bioanal. Chem. 385, 1012–1019 (2006).Article 
CAS 
PubMed 

Google Scholar 
Sayed, T. S., Maayah, Z. H., Zeidan, H. A., Agouni, A. & Korashy, H. M. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell Mol. Biol. Lett. 27, 1–26 (2022).Article 

Google Scholar 
Liao, C., Kim, U.-J. & Kannan, K. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles. Environ. Sci. Technol. 52, 5007–5026 (2018).Article 
CAS 
PubMed 

Google Scholar 
Dai, H., Asakawa, F. & Jitsunari, F. Study of indoor air pollution by permethrin: determination of permethrin in indoor air and 3-phenoxybenzoic acid in residents’ urine as an exposure index. Jpn. J. Environ. Toxicol. 9, 31–41 (2006).
Google Scholar 
Liao, X. et al. Contamination profiles and health impact of benzothiazole and its derivatives in PM2.5 in typical Chinese cities. Sci. Total Environ. 755, 142617 (2021).Article 
CAS 
PubMed 

Google Scholar 
Maceira, A., Marcé, R. M. & Borrull, F. Occurrence of benzothiazole, benzotriazole and benzenesulfonamide derivates in outdoor air particulate matter samples and human exposure assessment. Chemosphere 193, 557–566 (2018).Article 
CAS 
PubMed 

Google Scholar 
Avagyan, R., Luongo, G., Thorsén, G. & Östman, C. Benzothiazole, benzotriazole, and their derivates in clothing textiles—a potential source of environmental pollutants and human exposure. Environ. Sci. Pollut. Res. 22, 5842–5849 (2015).Article 
CAS 

Google Scholar 
Trabalón, L., Nadal, M., Borrull, F. & Pocurull, E. Determination of benzothiazoles in seafood species by subcritical water extraction followed by solid-phase microextraction-gas chromatography-tandem mass spectrometry: estimating the dietary intake. Anal. Bioanal. Chem. 409, 5513–5522 (2017).Article 
PubMed 

Google Scholar 
Hsu, C.-J. & Ding, W.-H. Determination of benzotriazole and benzothiazole derivatives in tea beverages by deep eutectic solvent-based ultrasound-assisted liquid-phase microextraction and ultrahigh-performance liquid chromatography-high resolution mass spectrometry. Food Chem. 368, 130798 (2022).Article 
CAS 
PubMed 

Google Scholar 
van Leerdam, J. A., Hogenboom, A. C., van der Kooi, M. M. E. & de Voogt, P. Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography LTQ FT Orbitrap mass spectrometry. Int. J. Mass Spectrom. 282, 99–107 (2009).Article 

Google Scholar 
Musatadi, M. et al. Multi-target analysis and suspect screening of xenobiotics in milk by UHPLC-HRMS/MS. Separations 8, 14 (2021).Article 
CAS 

Google Scholar 
Li, Z. et al. Saturated fatty acid biomarkers and risk of cardiometabolic diseases: a meta-analysis of prospective studies. Front. Nutr. 9, 963471 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhuang, P. et al. Circulating fatty acids, genetic risk, and incident coronary artery disease: a prospective, longitudinal cohort study. Sci. Adv. 9, eadf9037 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Z. et al. Near-roadway air pollution exposure and altered fatty acid oxidation among adolescents and young adults–The interplay with obesity. Environ. Int. 130, 104935 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao, J. et al. Metabolic pathways altered by air pollutant exposure in association with lipid profiles in young adults. Environ. Pollut. 327, 121522 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Z. et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ. Int. 145, 106091 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Venäläinen, T. M. et al. Effect of a 2-y dietary and physical activity intervention on plasma fatty acid composition and estimated desaturase and elongase activities in children: the Physical Activity and Nutrition in Children Study1. Am. J. Clin. Nutr. 104, 964–972 (2016).Article 
PubMed 

Google Scholar 
Wannamethee, S. G., Shaper, A. G. & Perry, I. J. Serum creatinine concentration and risk of cardiovascular disease. Stroke 28, 557–563 (1997).Article 
CAS 
PubMed 

Google Scholar 
Wyss, M. & Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 80, 1107–1213 (2000).Article 
CAS 
PubMed 

Google Scholar 
Wells, J. C. K. et al. Body composition in normal weight, overweight and obese children: matched case–control analyses of total and regional tissue masses, and body composition trends in relation to relative weight. Int. J. Obes. 30, 1506–1513 (2006).Article 
CAS 

Google Scholar 
López-Peralta, S. et al. Bone mineral density and body composition in normal weight, overweight and obese children. BMC Pediatr. 22, 1–8 (2022).Article 

Google Scholar 
Hirschel, J. et al. Relation of whole blood amino acid and acylcarnitine metabolome to age, sex, BMI, puberty, and metabolic markers in children and adolescents. Metabolites 10, 149 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McCormack, S. E. et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 8, 52–61 (2013).Article 
CAS 
PubMed 

Google Scholar 
Mangge, H. et al. Branched-chain amino acids are associated with cardiometabolic risk profiles found already in lean, overweight and obese young. J. Nutr. Biochem. 32, 123–127 (2016).Article 
CAS 
PubMed 

Google Scholar 
Mărginean, C. O., Meliţ, L. E., Ghiga, D. V. & Mărginean, M. O. Early inflammatory status related to pediatric obesity. Front. Pediatr. 7, 241 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Cook, D. G. et al. C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis 149, 139–150 (2000).Article 
CAS 
PubMed 

Google Scholar 
Haapala, E. A. et al. Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children. Eur. J. Sport Sci. 22, 906–915 (2022).Article 
PubMed 

Google Scholar 
Delgado-Alfonso, A. et al. Independent and combined associations of physical fitness components with inflammatory biomarkers in children and adolescents. Pediatr. Res. 84, 704–712 (2018).Article 
CAS 
PubMed 

Google Scholar 
Maitre, L. et al. State-of-the-art methods for exposure-health studies: results from the exposome data challenge event. Environ. Int. 168, 107422 (2022).Article 
PubMed 

Google Scholar 
Song, M.-K., Lin, F.-C., Ward, S. E. & Fine, J. P. Composite variables. Nurs. Res. 62, 45–49 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Dash, K., Goodacre, S. & Sutton, L. Composite outcomes in clinical prediction modeling: are we trying to predict apples and oranges? Ann. Emerg. Med. 80, 12–19 (2022).Article 
PubMed 

Google Scholar 
Ferreira-González, I. et al. Methodologic discussions for using and interpreting composite endpoints are limited, but still identify major concerns. J. Clin. Epidemiol. 60, 651–657 (2007).Article 
PubMed 

Google Scholar 
van Dam, R. M. New approaches to the study of dietary patterns. Br. J. Nutr. 93, 573–574 (2005).Article 
PubMed 

Google Scholar 
Petridi, E. et al. The impact of ultra-processed foods on obesity and cardiometabolic comorbidities in children and adolescents: a systematic review. Nutr. Rev. https://doi.org/10.1093/nutrit/nuad095 (2023).Cordova, R. et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. Lancet Reg. Health – Eur. 35, 100771 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Armstrong, P. W. & Westerhout, C. M. Composite end points in clinical research. Circulation 135, 2299–2307 (2017).Article 
PubMed 

Google Scholar 
McGee, G., Wilson, A., Webster, T. F. & Coull, B. A. Bayesian multiple index models for environmental mixtures. Biometrics 79, 462–474 (2023).Article 
PubMed 

Google Scholar 
Viitasalo, A. et al. The effects of a 2-year individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children. Prev. Med. 87, 81–88 (2016).Article 
PubMed 

Google Scholar 
Lakka, T. A. et al. A 2 year physical activity and dietary intervention attenuates the increase in insulin resistance in a general population of children: the PANIC study. Diabetologia 63, 2270–2281 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Klåvus, A. et al. “Notame”: workflow for non-targeted LC–MS metabolic profiling. Metabolites 10, 135 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zarei, I. et al. Eight-year diet and physical activity intervention affects serum metabolites during childhood and adolescence: A nonrandomized controlled trial. iScience 27, 110295 (2024).Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Soininen, P., Kangas, A. J., Würtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circulation: Cardiovasc. Genet. 8, 192–206 (2015).CAS 

Google Scholar 
Kyttälä, P. et al. Finnish Children Healthy Eating Index (FCHEI) and its associations with family and child characteristics in pre-school children. Public Health Nutr. 17, 2519–2527 (2014).Article 
PubMed 

Google Scholar 
Eloranta, A. M. et al. Dietary quality indices in relation to cardiometabolic risk among Finnish children aged 6–8 years—the PANIC study. Nutr., Metab. Cardiovasc. Dis. 26, 833–841 (2016).Article 
CAS 
PubMed 

Google Scholar 
Collings, P. J. et al. Cross-sectional associations of objectively-measured physical activity and sedentary time with body composition and cardiorespiratory fitness in mid-childhood: the PANIC study. Sports Med. 47, 769–780 (2017).Article 
PubMed 

Google Scholar 
Saari, A. et al. New Finnish growth references for children and adolescents aged 0 to 20 years: length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann. Med. 43, 235–248 (2011).Article 
PubMed 

Google Scholar 
Marshall, W. A. & Tanner, J. M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child 44, 291–303 (1969).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marshall, W. A. & Tanner, J. M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child 45, 13–23 (1970).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bekaert, S. et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6, 639–647 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

Google Scholar 
Baron, R. M. & Kenny, D. A. The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 51, 1173–1182 (1986).Article 
CAS 

Google Scholar 
Long, J. A. Package ‘interactions: comprehensive, user-friendly toolkit for probing interactions (2021).

Hot Topics

Related Articles