Designing nanozymes for in vivo applications

Vellard, M. The enzyme as drug: application of enzymes as pharmaceuticals. Curr. Opin. Biotechnol. 14, 444–450 (2003).Article 

Google Scholar 
de la Fuente, M. et al. Enzyme therapy: current challenges and future perspectives. Int. J. Mol. Sci. 22, 9181 (2021).Article 

Google Scholar 
Dean, S. N., Turner, K. B., Medintz, I. L. & Walper, S. A. Targeting and delivery of therapeutic enzymes. Ther. Delivery 8, 577–595 (2017).Article 

Google Scholar 
Baldo, B. A. Enzymes approved for human therapy: indications, mechanisms and adverse effects. BioDrugs 29, 31–55 (2015).Article 

Google Scholar 
Meghwanshi, G. K. et al. Enzymes for pharmaceutical and therapeutic applications. Biotechnol. Appl. Biochem. 67, 586–601 (2020).Article 

Google Scholar 
Ali, M., Ishqi, H. M. & Husain, Q. Enzyme engineering: reshaping the biocatalytic functions. Biotechnol. Bioeng. 117, 1877–1894 (2020).Article 

Google Scholar 
Sharma, A., Gupta, G., Ahmad, T., Mansoor, S. & Kaur, B. Enzyme engineering: current trends and future perspectives. Food Rev. Int. 37, 121–154 (2021).Article 

Google Scholar 
Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford Univ. Press, 2015).Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).Article 

Google Scholar 
Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).Article 

Google Scholar 
Kaspar, J. W., Niture, S. K. & Jaiswal, A. K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47, 1304–1309 (2009).Article 

Google Scholar 
Morgan, M. J. & Liu, Z.-G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011).Article 

Google Scholar 
Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).Article 

Google Scholar 
Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007).Article 

Google Scholar 
Nielsen, O. S. et al. Orgotein in radiation treatment of bladder cancer: a report on allergic reactions and lack of radioprotective effect. Acta Oncol. 26, 101–104 (1987).Article 

Google Scholar 
Menander-Huber, K. B., Edsmyr, F. & Huber, W. Orgotein (superoxide dismutase): a drug for the amelioration of radiation-induced side effects: a double-blind, placebo-controlled study in patients with bladder tumours. Urol. Res. 6, 255–257 (1978).Article 

Google Scholar 
Carocho, M. & Ferreira, I. C. F. R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51, 15–25 (2013).Article 

Google Scholar 
Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007). This article reports the peroxidase-like activity of magnetite Fe3O4 nanoparticles and establishes a paradigm for the study of nanozymes using enzymatic methods.Article 

Google Scholar 
Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018).Article 

Google Scholar 
Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013). This article provides the first systematic review of research progress on nanozymes.Article 

Google Scholar 
Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2018).Article 

Google Scholar 
Li, S. et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13, 827 (2022).Article 

Google Scholar 
Chen, J. et al. Bio-inspired nanozyme: a hydratase mimic in a zeolitic imidazolate framework. Nanoscale 11, 5960–5966 (2019).Article 

Google Scholar 
Li, F. et al. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. Int. Ed. Engl. 59, 11087–11092 (2020).Article 

Google Scholar 
Liu, Y. et al. Ferumoxytol nanoparticles target biofilms causing tooth decay in the human mouth. Nano Lett. 21, 9442–9449 (2021). This article reports the antibiofilm application of a peroxidase-like ferumoxytol nanozyme in human mouth.Article 

Google Scholar 
Dong, H., Fan, Y., Zhang, W., Gu, N. & Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 30, 1273–1296 (2019).Article 

Google Scholar 
Cai, X. et al. Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater. Today 44, 211–228 (2021).Article 

Google Scholar 
Jiang, D. et al. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683–3704 (2019).Article 

Google Scholar 
Batrakova, E. V. et al. A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjug. Chem. 18, 1498–1506 (2007).Article 

Google Scholar 
Brynskikh, A. M. et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5, 379–396 (2010).Article 

Google Scholar 
Manea, F., Houillon, F. B., Pasquato, L. & Scrimin, P. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. Engl. 43, 6165–6169 (2004).Article 

Google Scholar 
Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).Article 

Google Scholar 
Gao, X. J., Zhao, Y. & Gao, X. Catalytic signal transduction theory enabled virtual screening of nanomaterials for medical functions. Acc. Chem. Res. 56, 2366–2377 (2023).Article 

Google Scholar 
Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 63, 1035–1042 (2000).Article 

Google Scholar 
Fiedor, J. & Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6, 466–488 (2014).Article 

Google Scholar 
Kehrer, J. P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23, 21–48 (1993).Article 

Google Scholar 
Zhao, H., Zhang, R., Yan, X. & Fan, K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9, 6939–6957 (2021).Article 

Google Scholar 
Gao, W. et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 14, 160 (2023). This article reports the treatment of ischaemic stroke in mice using carbon dot nanozymes with high SOD-like activity.Article 

Google Scholar 
Zhang, R. et al. Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today 41, 101317 (2021).Article 

Google Scholar 
Zhang, R. et al. Edge‐site engineering of defective Fe–N4 nanozymes with boosted catalase‐like performance for retinal vasculopathies. Adv. Mater. 34, 2205324 (2022).Article 

Google Scholar 
Jingping, Z. et al. Geometric and electronic structure-matched superoxide dismutase-like and catalase-like sequential single-atom nanozymes for osteoarthritis recession. Adv. Funct. Mater. 33, 2209399 (2022).
Google Scholar 
Cao, Y. et al. Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. J. Nanobiotechnol. 21, 21 (2023).Article 

Google Scholar 
Zhang, W. et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138, 5860–5865 (2016).Article 

Google Scholar 
Wu, J. et al. Ligand‐dependent activity engineering of glutathione peroxidase‐mimicking MIL‐47(V) metal–organic framework nanozyme for therapy. Angew. Chem. Int. Ed. Engl. 60, 1227–1234 (2020).Article 

Google Scholar 
Huang, Y. et al. Self‐assembly of multi‐nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. Engl. 55, 6646–6650 (2016).Article 

Google Scholar 
Mu, X. et al. Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic brain injury. Nano Lett. 19, 4527–4534 (2019).Article 

Google Scholar 
Jin, Y. et al. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact. Mater. 28, 112–131 (2023).
Google Scholar 
Meng, X. et al. High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 15, 5735–5751 (2021).Article 

Google Scholar 
Shi, S. et al. Iron oxide nanozyme suppresses intracellular Salmonella enteritidis growth and alleviates infection in vivo. Theranostics 8, 6149–6162 (2018).Article 

Google Scholar 
Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021). This article reports the treatment of HepG2 tumours in mice using a bioinspired FeN3P single-atom nanozyme with high peroxidase-like activity.Article 

Google Scholar 
Ai, Y. et al. Dual enzyme mimics based on metal–ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv. Funct. Mater. 31, 2103581 (2021).Article 

Google Scholar 
Wu, L. et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds. ACS Nano 17, 1448–1463 (2023).Article 

Google Scholar 
Chen, J. et al. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 12, 3375 (2021).Article 

Google Scholar 
Li, C. et al. Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity. J. Nanobiotechnol. 17, 54 (2019).Article 

Google Scholar 
Haijun, W. et al. EGFR-antagonistic affibody-functionalized Pt-based nanozyme for enhanced tumor radiotherapy. Mater. Today Adv. 18, 100375 (2023).Article 

Google Scholar 
Wang, D. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11, 357 (2020).Article 

Google Scholar 
Wang, Z., Zhang, R., Yan, X. & Fan, K. Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater. Today 41, 81–119 (2020). This article reviews the relationship between structural features of nanozymes and their enzymatic-like activities.Article 

Google Scholar 
Sheng, J. et al. Multienzyme-like nanozymes: regulation, rational design, and application. Adv. Mater. 36, 2211210 (2023).Article 

Google Scholar 
Baldim, V., Bedioui, F., Mignet, N., Margaill, I. & Berret, J. F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10, 6971–6980 (2018).Article 

Google Scholar 
Singh, N., Savanur, M. A., Srivastava, S., D’Silva, P. & Mugesh, G. Redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in Parkinson’s disease model. Angew. Chem. Int. Ed. Engl. 56, 14267–14271 (2017).Article 

Google Scholar 
Feng, L. et al. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 181, 81–91 (2018).Article 

Google Scholar 
Xi, J. et al. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater. Sci. 7, 4131–4141 (2019).Article 

Google Scholar 
Dong, C. et al. A calcium fluoride nanozyme for ultrasound-amplified and Ca2+-overload-enhanced catalytic tumor nanotherapy. Adv. Mater. 34, 2205680 (2022).Article 

Google Scholar 
Zhang, Y. et al. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat. Commun. 11, 5421 (2020).Article 

Google Scholar 
Shen, X., Wang, Z., Gao, X. J. & Gao, X. Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv. Mater. 36, 2211151 (2023).Article 

Google Scholar 
Kouvaris, J. R., Kouloulias, V. E. & Vlahos, L. J. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 12, 738–747 (2007).Article 

Google Scholar 
Singh, V. K. & Seed, T. M. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin. Drug Saf. 18, 1077–1090 (2019).Article 

Google Scholar 
Walkey, C. et al. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci. Nano 2, 33–53 (2015).Article 

Google Scholar 
Wei, F. et al. A novel approach for the prevention of ionizing radiation-induced bone loss using a designer multifunctional cerium oxide nanozyme. Bioact. Mater. 21, 547–565 (2023).
Google Scholar 
Han, S. I. et al. Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32, 2001566 (2020).Article 

Google Scholar 
Zhang, B. et al. Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials 293, 121980 (2022).Article 

Google Scholar 
Wang, C. et al. Clinically approved carbon nanoparticles with oral administration for intestinal radioprotection via protecting the small intestinal crypt stem cells and maintaining the balance of intestinal flora. Small 16, 1906915 (2020).Article 

Google Scholar 
Lee, W. M. Drug-induced hepatotoxicity. N. Engl. J. Med. 349, 474–485 (2003).Article 

Google Scholar 
Naughton, C. A. Drug-induced nephrotoxicity. Am. Fam. Physician 78, 743–750 (2008).
Google Scholar 
James, S. E. et al. Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants. NeuroToxicology 29, 605–612 (2008).Article 

Google Scholar 
Varga, Z. V., Ferdinandy, P., Liaudet, L. & Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 309, H1453–H167 (2015).Article 

Google Scholar 
Stine, J. G. & Lewis, J. H. Current and future directions in the treatment and prevention of drug-induced liver injury: a systematic review. Expert Rev. Gastroenterol. Hepatol. 10, 517–536 (2016).Article 

Google Scholar 
Zhang, D. Y. et al. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics 11, 9904–9917 (2021).Article 

Google Scholar 
Chen, C. et al. Manganese Prussian blue nanozymes with antioxidant capacity prevent acetaminophen-induced acute liver injury. Biomater. Sci. 11, 2348–2358 (2023).Article 

Google Scholar 
Tang, Y. et al. A rational design of metal–organic framework nanozyme with high-performance copper active centers for alleviating chemical corneal burns. Nano-Micro Lett. 15, 112 (2023).Article 

Google Scholar 
Liu, Q. et al. Nanozyme-cosmetic contact lenses for ocular surface disease prevention. Adv. Mater. 35, 2305555 (2023).Article 

Google Scholar 
Li, F. et al. Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today 35, 100925 (2020).Article 

Google Scholar 
Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).Article 

Google Scholar 
Zhou, C. et al. Self-propelled ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small 19, 2206408 (2023).Article 

Google Scholar 
Lu, Y. et al. MnO2 coated mesoporous PdPt nanoprobes for scavenging reactive oxygen species and solving acetaminophen-induced liver injury. Adv. Healthc. Mater. 12, 2300163 (2023).Article 

Google Scholar 
Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).Article 

Google Scholar 
Ni, D. et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat. Commun. 9, 5421 (2018).Article 

Google Scholar 
Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020).Article 

Google Scholar 
Weng, Q. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 12, 1436 (2021). This article reports the use of ultrasmall CeO2 nanozymes for treating acute kidney injury induced by cisplatin in mice.Article 

Google Scholar 
Zhang, D.-Y. et al. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials 271, 120706 (2021).Article 

Google Scholar 
Zhang, D.-Y. et al. Ultrasmall platinum nanozymes as broad-spectrum antioxidants for theranostic application in acute kidney injury. Chem. Eng. J. 409, 127371 (2020).Article 

Google Scholar 
Ren, C., Hu, X. & Zhou, Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase‐like activity and metabolic regulation. Adv. Sci. 5, 1700595 (2018).Article 

Google Scholar 
Tabish, T. A. & Narayan, R. J. Crossing the blood–brain barrier with graphene nanostructures. Mater. Today 51, 393–401 (2021).Article 

Google Scholar 
Yang, X. et al. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ. Toxicol. 34, 415–423 (2019).Article 

Google Scholar 
Zhao, J. et al. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 9, 2843–2855 (2019).Article 

Google Scholar 
Zhao, N. et al. Construction of pH-dependent nanozymes with oxygen vacancies as the high-efficient reactive oxygen species scavenger for oral-administrated anti-inflammatory therapy. Adv. Healthc. Mater. 10, 2101618 (2021).Article 

Google Scholar 
Zhao, S. et al. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 30, 2004692 (2020).Article 

Google Scholar 
Huang, S. & Huang, G. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 26, 252–261 (2019).Article 

Google Scholar 
Cheng, Y. et al. Mn3O4 nanozyme for inflammatory bowel disease therapy. Adv. Ther. 4, 2100081 (2021).Article 

Google Scholar 
Zeng, F. et al. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease. J. Nanobiotechnol. 20, 107 (2022).Article 

Google Scholar 
Miao, Z. et al. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 20, 3079–3089 (2020).Article 

Google Scholar 
Zhao, J. et al. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10, 26108–26117 (2018).Article 

Google Scholar 
Yana, M. et al. Versatile carbon dots with superoxide dismutase-like nanozyme activity and red fluorescence for inflammatory bowel disease therapeutics. Carbon 204, 526–537 (2023).Article 

Google Scholar 
Youshia, J. & Lamprecht, A. Size-dependent nanoparticulate drug delivery in inflammatory bowel diseases. Expert Opin. Drug Deliv. 13, 281–294 (2016).Article 

Google Scholar 
Ma, Y. et al. Biomimetic MOF nanoparticles delivery of C-dot nanozyme and CRISPR/Cas9 system for site-specific treatment of ulcerative colitis. ACS Appl. Mater. Interfaces 14, 6358–6369 (2022).Article 

Google Scholar 
Cheng, J. et al. Macrophage-derived extracellular vesicles-coated palladium nanoformulations modulate inflammatory and immune homeostasis for targeting therapy of ulcerative colitis. Adv. Sci. 10, 2304002 (2023).Article 

Google Scholar 
Zhu, D. et al. Zero-valence selenium-enriched Prussian blue nanozymes reconstruct intestinal barrier against inflammatory bowel disease via inhibiting ferroptosis and T cells differentiation. Adv. Healthc. Mater. 12, 2203160 (2023).Article 

Google Scholar 
Liu, Y. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020).Article 

Google Scholar 
Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697 (2012).Article 

Google Scholar 
Lepetsos, P. & Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta Mol. Basis Dis. 1862, 576–591 (2016).Article 

Google Scholar 
Aldrich, J. L., Panicker, A., Ovalle, R. & Sharma, B. Drug delivery strategies and nanozyme technologies to overcome limitations for targeting oxidative stress in osteoarthritis. Pharmaceuticals 16, 1044 (2023).Article 

Google Scholar 
Brown, S., Kumar, S. & Sharma, B. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 93, 239–257 (2019).Article 

Google Scholar 
Rothenfluh, D. A., Bermudez, H., O’Neil, C. P. & Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 7, 248–254 (2008).Article 

Google Scholar 
DiDomenico, C. D., Lintz, M. & Bonassar, L. J. Molecular transport in articular cartilage — what have we learned from the past 50 years? Nat. Rev. Rheumatol. 14, 393–403 (2018).Article 

Google Scholar 
Kumar, S., Adjei, I. M., Brown, S. B., Liseth, O. & Sharma, B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 224, 119467 (2019).Article 

Google Scholar 
Lin, T. et al. Carboxymethyl chitosan-assisted MnOx nanoparticles: synthesis, characterization, detection and cartilage repair in early osteoarthritis. Carbohydr. Polym. 294, 119821 (2022).Article 

Google Scholar 
Chen, L., Tiwari, S. R., Zhang, Y., Zhang, J. & Sun, Y. Facile synthesis of hollow MnO2 nanoparticles for reactive oxygen species scavenging in osteoarthritis. ACS Biomater. Sci. Eng. 7, 1686–1692 (2021).Article 

Google Scholar 
Xiong, H. et al. Biodegradable hollow-structured nanozymes modulate phenotypic polarization of macrophages and relieve hypoxia for treatment of osteoarthritis. Small 18, 2203240 (2022).Article 

Google Scholar 
Zhou, T. et al. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr. Polym. 292, 119667 (2022).Article 

Google Scholar 
Yu, P. et al. Mimicking antioxidases and hyaluronan synthase: a zwitterionic nanozyme for photothermal therapy of osteoarthritis. Adv. Mater. 35, 2303299 (2023).Article 

Google Scholar 
Wang, W. et al. Trimanganese tetroxide nanozyme protects cartilage against degeneration by reducing oxidative stress in osteoarthritis. Adv. Sci. 10, 2205859 (2023).Article 

Google Scholar 
Chen, H. et al. Urchin-like ceria nanoparticles for enhanced gene therapy of osteoarthritis. Sci. Adv. 9, eadf0988 (2023).Article 

Google Scholar 
Schett, G. & Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 8, 656–664 (2012).Article 

Google Scholar 
Zhang, L. et al. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact. Mater. 18, 1–14 (2022).
Google Scholar 
Kalashnikova, I. et al. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 10, 11863–11880 (2020).Article 

Google Scholar 
Jia, M. et al. Messenger nanozyme for reprogramming the microenvironment of rheumatoid arthritis. ACS Appl. Mater. Interfaces 15, 338–353 (2023).Article 

Google Scholar 
Kim, J. et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 13, 3206–3217 (2019).Article 

Google Scholar 
Liu, Y. et al. Multifunctional janus nanoplatform for efficiently synergistic theranostics of rheumatoid arthritis. ACS Nano 17, 8167–8182 (2023).Article 

Google Scholar 
Yang, B., Yao, H., Yang, J., Chen, C. & Shi, J. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat. Commun. 13, 1988 (2022).Article 

Google Scholar 
Koo, S. et al. Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model. Nat. Nanotechnol. 18, 1502–1514 (2023). This article reports a hybrid system of CeO2 nanozyme with mesenchymal stem cell nanovesicles for the treatment of collagen-induced rheumatoid arthritis in mice.Article 

Google Scholar 
Li, W. et al. Mutual-reinforcing sonodynamic therapy against rheumatoid arthritis based on sparfloxacin sonosensitizer doped concave-cubic rhodium nanozyme. Biomaterials 276, 121063 (2021).Article 

Google Scholar 
Deng, C. et al. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat. Commun. 12, 2174 (2021).Article 

Google Scholar 
Zhao, Y. et al. Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022).Article 

Google Scholar 
Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).Article 

Google Scholar 
Granger, D. N. & Kvietys, P. R. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551 (2015).Article 

Google Scholar 
Zhang, K. et al. Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 19, 2812–2823 (2019).Article 

Google Scholar 
Liu, J. et al. Prussian blue nanozyme treatment of ischemic brain injury via reducing oxidative stress inhibits inflammation, suppresses apoptosis, and promotes neurological recovery. ACS Chem. Neurosci. 14, 1535–1546 (2023).
Google Scholar 
Wang, Z. et al. A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv. Mater. 36, 2210144 (2023).Article 

Google Scholar 
Liu, Y. et al. A Co-doped Fe3O4 nanozyme shows enhanced reactive oxygen and nitrogen species scavenging activity and ameliorates the deleterious effects of ischemic stroke. ACS Appl. Mater. Interfaces 13, 46213–46224 (2021).Article 

Google Scholar 
Kim, C. K. et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl. 51, 11039–11043 (2012).Article 

Google Scholar 
Bao, Q. et al. Simultaneous blood–brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 12, 6794–6805 (2018).Article 

Google Scholar 
He, L. et al. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 6, eaay9751 (2020).Article 

Google Scholar 
Feng, L. et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 15, 2263–2280 (2021).Article 

Google Scholar 
Yan, B. C. et al. Dietary Fe3O4 nanozymes prevent the injury of neurons and blood–brain barrier integrity from cerebral ischemic stroke. ACS Biomater. Sci. Eng. 7, 299–310 (2021).Article 

Google Scholar 
Wang, J. et al. A bioinspired manganese-organic framework ameliorates ischemic stroke through its intrinsic nanozyme activity and upregulating endogenous antioxidant enzymes. Adv. Sci. 10, 2206854 (2023).Article 

Google Scholar 
Liu, Y. et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 139, 856–862 (2017).Article 

Google Scholar 
Kosik, K. S. Alzheimer’s disease: a cell biological perspective. Science 256, 780–783 (1992).Article 

Google Scholar 
Hamley, I. W. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev. 112, 5147–5192 (2012).Article 

Google Scholar 
Chen, Q. et al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano 12, 1321–1338 (2018).Article 

Google Scholar 
Ma, M. et al. A biocompatible second near-infrared nanozyme for spatiotemporal and non-invasive attenuation of amyloid deposition through scalp and skull. ACS Nano 14, 9894–9903 (2020).Article 

Google Scholar 
Ma, M. et al. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-β in an Alzheimer’s disease model. J. Am. Chem. Soc. 142, 21702–21711 (2020).Article 

Google Scholar 
Zielonka, J. et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117, 10043–10120 (2017).Article 

Google Scholar 
Ren, C., Li, D., Zhou, Q. & Hu, X. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model. Biomaterials 232, 119752 (2019).Article 

Google Scholar 
Zhang, Q.-L., Fu, B. M. & Zhang, Z.-J. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood–brain barrier permeability. Drug Deliv. 24, 1037–1044 (2017).Article 

Google Scholar 
Jia, Z. et al. A functionalized octahedral palladium nanozyme as a radical scavenger for ameliorating Alzheimer’s disease. ACS Appl. Mater. Interfaces 13, 49602–49613 (2021).Article 

Google Scholar 
Gong, Y. et al. Selenium-core nanozymes dynamically regulates Aβ & neuroinflammation circulation: augmenting repair of nervous damage. Chem. Eng. J. 418, 129345 (2021).Article 

Google Scholar 
Vaupel, P., Kelleher, D. K. & Höckel, M. Oxygenation status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin. Oncol. 28, 29–35 (2001).Article 

Google Scholar 
Wang, Z. et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9, 3334 (2018).Article 

Google Scholar 
Zhao, Q. et al. Dual active centers linked by a reversible electron station as a multifunctional nanozyme to induce synergetically enhanced cascade catalysis for tumor-specific therapy. J. Am. Chem. Soc. 145, 12586–12600 (2023).Article 

Google Scholar 
Hao, Z. et al. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 425, 130639 (2021).Article 

Google Scholar 
Zhu, Y. et al. Photothermal enhanced and tumor microenvironment responsive nanozyme for amplified cascade enzyme catalytic therapy. Adv. Healthc. Mater. 12, 2202198 (2022).Article 

Google Scholar 
Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).
Google Scholar 
Yang, J. et al. RuCu nanosheets with ultrahigh nanozyme activity for chemodynamic therapy. Adv. Healthc. Mater. 12, 2300490 (2023).Article 

Google Scholar 
Xing, Y. et al. Flower-like nanozyme with highly porous carbon matrix induces robust oxidative storm against drug-resistant cancer. ACS Nano 17, 6731–6744 (2023).Article 

Google Scholar 
Huo, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017). This article reports the catalytic treatment of 4T1 and U87 tumours in mice using a peroxidase-like Fe3O4 nanozyme cascaded with glucose oxidase.Article 

Google Scholar 
Gao, S. et al. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme‐catalyzed cascade reaction. Adv. Sci. 6, 1801733 (2018).Article 

Google Scholar 
Sun, W. et al. Hydrogen sulfide gas amplified ROS cascade: FeS@GOx hybrid nanozyme designed for boosting tumor chemodynamic immunotherapy. Adv. Healthc. Mater. 12, 2300385 (2023).Article 

Google Scholar 
Yang, X. et al. Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors. Nano Lett. 19, 4334–4342 (2019).Article 

Google Scholar 
Zhu, D. et al. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 32, 2110268 (2022).Article 

Google Scholar 
Zhong, X. et al. GSH‐depleted PtCu3 nanocages for chemodynamic‐enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 30, 1907954 (2019).Article 

Google Scholar 
Wu, S., Liu, X., Ren, J. & Qu, X. Glutathione depletion in a benign manner by MoS2-based nanoflowers for enhanced hypoxia-irrelevant free-radical-based cancer therapy. Small 15, 1904870 (2019).Article 

Google Scholar 
Wang, D. et al. Self‐assembled single‐site nanozyme for tumor‐specific amplified cascade enzymatic therapy. Angew. Chem. Int. Ed. Engl. 133, 3038–3044 (2021).Article 

Google Scholar 
Liu, Y. et al. Multi-enzyme Co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 145, 8965–8978 (2023).Article 

Google Scholar 
Chang, M. et al. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem. Int. Ed. Engl. 60, 12971–12979 (2021).Article 

Google Scholar 
Zhang, Y. et al. Hollow magnetic nanosystem-boosting synergistic effect between magnetic hyperthermia and sonodynamic therapy via modulating reactive oxygen species and heat shock proteins. Chem. Eng. J. 390, 124521 (2020).Article 

Google Scholar 
Fan, K. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1440 (2018).This article reports the regulation of multi-enzyme activity of a nitrogen-doped carbon nanozyme to selectively kill HepG2 tumours in mice.Article 

Google Scholar 
Zhen, W. et al. Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem. Int. Ed. Engl. 59, 9491–9497 (2020).Article 

Google Scholar 
Hu, X. et al. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 142, 1636–1644 (2019).Article 

Google Scholar 
Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).Article 

Google Scholar 
Hao, Y. et al. RGD peptide modified platinum nanozyme Co-loaded glutathione-responsive prodrug nanoparticles for enhanced chemo-photodynamic bladder cancer therapy. Biomaterials 293, 121975 (2022).Article 

Google Scholar 
Wang, Z. et al. Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci. Adv. 6, eabc8733 (2020).Article 

Google Scholar 
Meng, Y. et al. Polarity control of DNA adsorption enabling the surface functionalization of CuO nanozymes for targeted tumor therapy. Mater. Horiz. 8, 972–986 (2020).Article 

Google Scholar 
Liu, Q. et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv. Mater. 33, 2103128 (2021).Article 

Google Scholar 
Zhang, W. et al. Precise chemodynamic therapy of cancer by trifunctional bacterium-based nanozymes. ACS Nano 15, 19321–19333 (2021).Article 

Google Scholar 
Li, Y. et al. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 197, 12–19 (2019).Article 

Google Scholar 
Gao, F. et al. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials 230, 119635 (2019).Article 

Google Scholar 
Liang, Q. et al. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 35, 100935 (2020).Article 

Google Scholar 
Zhao, Z. et al. Tumor microenvironment-activable manganese-boosted catalytic immunotherapy combined with PD-1 checkpoint blockade. ACS Nano 16, 20400–20418 (2022).Article 

Google Scholar 
Murugaiyan, J. et al. Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11, 200 (2022).Article 

Google Scholar 
Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).Article 

Google Scholar 
Schaeffer, A. J., Jones, J. M. & Amundsen, S. K. Bacterial effect of hydrogen peroxide on urinary tract pathogens. Appl. Environ. Microbiol. 40, 337–340 (1980).Article 

Google Scholar 
Gao, L., Giglio, K. M., Nelson, J. L., Sondermann, H. & Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6, 2588–2593 (2014).Article 

Google Scholar 
Xu, B. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. Engl. 58, 4911–4916 (2019).Article 

Google Scholar 
Shan, J. et al. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 13, 13797–13808 (2019).Article 

Google Scholar 
Zhao, J. et al. Fe(II)-driven self-assembly of enzyme-like coordination polymer nanoparticles for cascade catalysis and wound disinfection applications. Chem. Eng. J. 420, 129674 (2021).Article 

Google Scholar 
Yuxian, W. et al. Ultra-small Au/Pt NCs@GOX clusterzyme for enhancing cascade catalytic antibiofilm effect against F. nucleatum-induced periodontitis. Chem. Eng. J. 466, 143292 (2023).Article 

Google Scholar 
Zhao, Y. et al. Biomimetic nanozyme-decorated hydrogels with H2O2-activated oxygenation for modulating immune microenvironment in diabetic wound. ACS Nano 17, 16854–16869 (2023).Article 

Google Scholar 
Xiaoyu, W., Wenchao, H., Xing-Hua, X. & Chen, W. Implanting of single zinc sites into 2D metal–organic framework nanozymes for boosted antibiofilm therapy. Adv. Funct. Mater. 33, 2212798 (2022).
Google Scholar 
Zhenzhen, W. et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 30, 145–157 (2016).
Google Scholar 
Gao, L. et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101, 272–284 (2016).Article 

Google Scholar 
Huang, Y. et al. Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Biomaterials 268, 120581 (2020).Article 

Google Scholar 
Liu, Y. et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat. Commun. 9, 2920 (2018).Article 

Google Scholar 
Zhang, L. et al. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat. Commun. 12, 2002 (2021).Article 

Google Scholar 
Rubio, C. P. & Cerón, J. J. Spectrophotometric assays for evaluation of reactive oxygen species (ROS) in serum: general concepts and applications in dogs and humans. BMC Vet. Res. 17, 226 (2021).Article 

Google Scholar 
Wu, H. et al. A photomodulable bacteriophage-spike nanozyme enables dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of MRSA infections. Adv. Sci. 10, 2301694 (2023).Article 

Google Scholar 
Wang, L. et al. Defect‐rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 32, 2005423 (2020).Article 

Google Scholar 
Zhang, L. et al. Nature‐inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia‐like surface for enhanced bacterial inhibition. Angew. Chem. Int. Ed. Engl. 60, 3469–3474 (2020).Article 

Google Scholar 
Sang, Y. et al. Construction of nanozyme‐hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 29, 1900518 (2019).Article 

Google Scholar 
Liao, Z.-Y. et al. Metal–organic framework modified MoS2 nanozyme for synergetic combating drug-resistant bacterial infections via photothermal effect and photodynamic modulated peroxidase-mimic activity. Adv. Healthc. Mater. 11, 2101698 (2021).Article 

Google Scholar 
Wei, G. et al. A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy. Sci. Adv. 20, eadg0949 (2023).Article 

Google Scholar 
Gao, F., Shao, T., Yu, Y., Xiong, Y. & Yang, L. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat. Commun. 12, 745 (2021).Article 

Google Scholar 
Dong, H. et al. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 13, 5365 (2022).Article 

Google Scholar 
Zhang, R., Yan, X. & Fan, K. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2, 534–547 (2021).This article reviews strategies for designing high-performance nanozymes by mimicking the structure of natural enzymes.Article 

Google Scholar 
Li, Y., Zhang, R., Yan, X. & Fan, K. Machine learning facilitating the rational design of nanozymes. J. Mater. Chem. B 11, 6466–6477 (2023).Article 

Google Scholar 
Zhang, R., Fan, K. & Yan, X. Nanozymes: created by learning from nature. Sci. China Life Sci. 63, 1183–1200 (2020).Article 

Google Scholar 
Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).Article 

Google Scholar 
Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).Article 

Google Scholar 
Shen, J. et al. A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy. Biomaterials 251, 120079 (2020).Article 

Google Scholar 
Wang, X., Zhong, X., Li, J., Liu, Z. & Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50, 8669–8742 (2021).Article 

Google Scholar 
Huang, H., Feng, W., Chen, Y. & Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).Article 

Google Scholar 
Lu, M., Cohen, M. H., Rieves, D. & Pazdur, R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am. J. Hematol. 85, 315–319 (2010).Article 

Google Scholar 
Hoffman, R. S. Thallium toxicity and the role of Prussian blue in therapy. Toxicol. Rev. 22, 29–40 (2003).Article 

Google Scholar 
Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M. & Vasić, V. M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol. 11, 315–335 (2013).Article 

Google Scholar 
Xu, W. et al. Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection. Nat. Commun. 14, 6064 (2023).Article 

Google Scholar 
Xi, J. et al. A nanozyme‐based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 31, 2007130 (2020).Article 

Google Scholar 
Lin, A. et al. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 22, 508–516 (2022).Article 

Google Scholar 
Ding, H. et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett. 19, 203–209 (2019).Article 

Google Scholar 
Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019). This article reports the in vivo monitoring of LS174T tumours in mice using a renal-clearable peroxidase-like gold nanozyme.Article 

Google Scholar 
Yousefpour, P., Ni, K. & Irvine, D. J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1, 107–124 (2023).Article 

Google Scholar 
Hsu, C. L. & Schnabl, B. The gut–liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 21, 719–733 (2023).Article 

Google Scholar 
Cheng, P. & Pu, K. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat. Rev. Mater. 6, 1095–1113 (2021).Article 

Google Scholar 
Nygaard, G. & Firestein, G. S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 16, 316–333 (2020).Article 

Google Scholar 
Stoll, G, & Nieswandtm B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nat. Rev. Neurol. 15, 473–481 (2019).Article 

Google Scholar 
Fisher, M. & Savitz, S. I. Pharmacological brain cytoprotection in acute ischaemic stroke — renewed hope in the reperfusion era. Nat. Rev. Neurol. 18, 193–202 (2022).Article 

Google Scholar 
Giacobini, E. & Gold, G. Alzheimer disease therapy — moving from amyloid-β to tau. Nat. Rev. Neurol. 9, 677–686 (2013).Article 

Google Scholar 
O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019).Article 

Google Scholar 
Schäfer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).Article 

Google Scholar 
McDougald, D., Rice, S., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).Article 

Google Scholar 
Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 25, 13–23 (2023).Article 

Google Scholar 
Brand, M. D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100, 14–31 (2016).Article 

Google Scholar 
Begum, R. et al. NADPH oxidase family proteins: signaling dynamics to disease management. Cell. Mol. Immunol. 19, 660–686 (2022).Article 

Google Scholar 
Graves, S. M. et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat. Neurosci. 23, 15–20 (2020).Article 

Google Scholar 
Miller, D. M., Buettner, G. R. & Aust, S. D. Transition metals as catalysts of “autoxidation” reactions. Free Radic. Biol. Med. 8, 95–108 (1990).Article 

Google Scholar 
D’Autréaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).Article 

Google Scholar 
Kostyuk, A. I. et al. Hypocrates is a genetically encoded fluorescent biosensor for (pseudo) hypohalous acids and their derivatives. Nat. Commun. 13, 171 (2022).Article 

Google Scholar 
Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA 107, 21316–21321 (2010).Article 

Google Scholar 
Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).Article 

Google Scholar 
Giustarini, D., Dalle-Donne, I., Tsikas, D. & Rossi, R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 46, 241–281 (2009).Article 

Google Scholar 
Lei, X. G. et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol. Rev. 96, 307–364 (2016).Article 

Google Scholar 
Hui, W. et al. Nanozymes: a clear definition with fuzzy edges. Nano Today 40, 101269 (2021).Article 

Google Scholar 
Zandieh, M. & Liu, J. Nanozymes: definition, activity, and mechanisms. Adv. Mater. 36, 2211041 (2023).Article 

Google Scholar 
Scott, S., Zhao, H., Dey, A. & Gunnoe, T. B. Nano-apples and orange-zymes. ACS Catal. 10, 14315–14317 (2020).Article 

Google Scholar 
Robert, A. & Meunier, B. How to define a nanozyme. ACS Nano 16, 6956–6959 (2022).Article 

Google Scholar 
He, J., Zhang, R. & Yan, X. In Biomedical Nanozymes: From Diagnostics to Therapeutics (eds Hui, W. et al.) 1–13 (Springer Nature Singapore, 2023).

Hot Topics

Related Articles