Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight

Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016). This article describes the general approach of various orders of modelling in the context of cardiovascular physiology and disease.Article 
PubMed 

Google Scholar 
International Civil Aviation Organization. Manual of Civil Aviation Medicine. 3rd edn Ch. III-1-1. Doc. 8984 (ICAO, 2012).International Air Transport Association. IATA Medical Manual for Aviation. 12th edn Ch. 6.1.6 (IATA, 2020).Federal Aviation Administration. Human space flight. FAA www.faa.gov/space/human_spaceflight (2024).Space Industry Act 2018. Legislation.gov.uk www.legislation.gov.uk/ukpga/2018/5/contents (2024).The Space Industry Regulations 2021. Legislation.gov.uk www.legislation.gov.uk/uksi/2021/792/contents (2024).Spalart, P. R. & Venkatakrishnan, V. On the role and challenges of CFD in the aerospace industry. Aeronautical J. 120, 209–232 (2016).Article 

Google Scholar 
Sjostrand, T. Volume and distribution of blood and their significance in regulating the circulation. Physiol. Rev. 33, 202–228 (1953).Article 
CAS 
PubMed 

Google Scholar 
Maw, G. J., Mackenzie, I. L. & Taylor, N. A. Redistribution of body fluids during postural manipulations. Acta Physiol. Scand. 155, 157–163 (1995).Article 
CAS 
PubMed 

Google Scholar 
Leverett, S. D. Jr, Burton, R. R., Crossley, R. J., Michaelson, E. D. & Shubrooks, S. J. Jr. Physiologic responses to high, sustained +Gz acceleration. Defense Technical Information Center. apps.dtic.mil/sti/citations/AD0777604 (1973).Howard, P. in A Textbook of Aviation Physiology (ed. Gillies, J. A.) 551–687 (Pergamon Press, 1965).McKenzie, I. & Gillingham, K. K. Incidence of cardiac dysrhythmias occurring during centrifuge training. Aviat. Space Environ. Med. 64, 687–691 (1993).CAS 
PubMed 

Google Scholar 
Whinnery, A. M., Whinnery, J. E. & Hickman, J. R. High +Gz centrifuge training: the electrocardiographic response to +Gz-induced loss of consciousness. Aviat. Space Environ. Med. 61, 609–614 (1990).CAS 
PubMed 

Google Scholar 
Wang, Y. X., Xu, L., Wei, W. B. & Jonas, J. B. Intraocular pressure and its normal range adjusted for ocular and systemic parameters. The Beijing Eye Study 2011. PLoS ONE 13, e0196926 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Cochran, L. B., Gard, P.W. & Norsworthy, M. E. Variations in Human G Tolerance to Positive Acceleration (US Naval School of Aviation Medicine, 1954).Whinnery, T., Forster, E. M. & Rogers, P. B. The +Gz recovery of consciousness curve. Extrem. Physiol. Med. 3, 9 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Tripp, L. D. et al. +Gz acceleration loss of consciousness: time course of performance deficits with repeated experience. Hum. Factors 48, 109–120 (2006).Article 
PubMed 

Google Scholar 
Whinnery, T. & Forster, E. M. The +Gz-induced loss of consciousness curve. Extrem. Physiol. Med. 2, 19 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Green, N. D. C. in Ernsting’s Aviation Medicine Ch. 7 (eds Gradwell, D. P. & Rainford, D.) 131–156 (CRC Press, 2016).Nishida, Y. et al. Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats. J. Physiol. Sci. 66, 447–462 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Eiken, O., Keramidas, M. E., Taylor, N. A. & Gronkvist, M. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration. Eur. J. Appl. Physiol. 117, 61–72 (2017).Article 
CAS 
PubMed 

Google Scholar 
Park, M., Yoo, S., Seol, H., Kim, C. & Hong, Y. Unpredictability of fighter pilots’ g duration tolerance by anthropometric and physiological characteristics. Aerosp. Med. Hum. Perform. 86, 397–401 (2015).Article 
PubMed 

Google Scholar 
Webb, J. T., Oakley, C. J. & Meeker, L. J. Unpredictability of fighter pilot G tolerance using anthropometric and physiologic variables. Aviat. Space Environ. Med. 62, 128–135 (1991).CAS 
PubMed 

Google Scholar 
Tu, M. Y. et al. Roles of physiological responses and anthropometric factors on the gravitational force tolerance for occupational hypergravity exposure. Int. J. Environ. Res. Public. Health 17, 8061 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Nunneley, S. A. & Stribley, R. F. Heat and acute dehydration effects on acceleration response in man. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 47, 197–200 (1979).CAS 
PubMed 

Google Scholar 
Mills, W. D., Greenhaw, R. M. & Wang, J. M. P. A medical review of fatal high-G U.S. aerobatic accidents. Aerosp. Med. Hum. Perform. 90, 959–965 (2019).Article 
PubMed 

Google Scholar 
Eiken, O., Mekjavic, I., Sundblad, P. & Kolegard, R. G tolerance vis-a-vis pressure-distension and pressure-flow relationships of leg arteries. Eur. J. Appl. Physiol. 112, 3619–3627 (2012).Article 
PubMed 

Google Scholar 
Sundblad, P., Kolegard, R., Migeotte, P. F., Deliere, Q. & Eiken, O. The arterial baroreflex and inherent G tolerance. Eur. J. Appl. Physiol. 116, 1149–1157 (2016).Article 
PubMed 

Google Scholar 
Pollock, R. D. et al. Hemodynamic responses and G protection afforded by three different anti-G systems. Aerosp. Med. Hum. Perform. 90, 925–933 (2019).Article 
PubMed 

Google Scholar 
Shubrooks, S. J. Jr Positive-pressure breathing as a protective technique during +Gz acceleration. J. Appl. Physiol. 35, 294–298 (1973).Article 
PubMed 

Google Scholar 
Glaister, D. H. The Effects of Gravity and Acceleration on the Lung. The Advisory Group for Aerospace Research and Development (NATO, 1970).Ryan, E. A., Kerr, W. K. & Franks, W. R. Some physiological findings on normal men subjected to negative g. J. Aviat. Med. 21, 173–194 (1950).CAS 
PubMed 

Google Scholar 
Lehr, A. K. et al. Previous exposure to negative Gz reduces relaxed +Gz tolerance. Aviat. Space Environ. Med. 63, 405 (1992).
Google Scholar 
Prior, A. R. J., Adcock, T. R. & McCarthy, G. W. In-flight arterial blood pressure changes during −Gz to +Gz manoeuvring. Aviat. Space Environ. Med. 64, 428 (1993).
Google Scholar 
Menden, T. et al. Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography. Physiol. Meas. 42, 094001 (2021).Article 

Google Scholar 
Pollock, R. D. et al. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp. Med. Hum. Perform. 92, 633–641 (2021).Article 
PubMed 

Google Scholar 
Sandler, H. Cineradiographic observations of human subjects during transverse accelerations of +5Gx and +10Gx. Aerosp. Med. 37, 445–448 (1966).CAS 
PubMed 

Google Scholar 
Lindberg, E. F., Marshall, H. W., Sutterer, W. F., Mc, G. T. & Wood, E. H. Studies of cardiac output and circulatory pressures in human beings during forward acceleration. Aerosp. Med. 33, 81–91 (1962).CAS 
PubMed 

Google Scholar 
Rogge, J. D., Meyer, J. F. & Brown, W. K. Comparison of the incidence of cardiac arrhythmias during +Gx acceleration, treadmill exercise and tilt table testing. Aerosp. Med. 40, 1–5 (1969).CAS 
PubMed 

Google Scholar 
Suresh, R., Blue, R. S., Mathers, C. H., Castleberry, T. L. & Vanderploeg, J. M. Dysrhythmias in laypersons during centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 88, 1008–1015 (2017).Article 
PubMed 

Google Scholar 
Torphy, D. E., Leverett, S. D. Jr & Lamb, L. E. Cardiac arrhythmias occurring during acceleration. Aerosp. Med. 37, 52–58 (1966).CAS 
PubMed 

Google Scholar 
Pollock, R. D., Hodkinson, P. D., Smith, T. G. & Oh, G. The x, y and z of human physiological responses to acceleration. Exp. Physiol. 106, 2367–2384 (2021).Article 
PubMed 

Google Scholar 
Smith, T. G. et al. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 93, 830–839 (2022).Article 
PubMed 

Google Scholar 
Blue, R. S., Riccitello, J. M., Tizard, J., Hamilton, R. J. & Vanderploeg, J. M. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat. Space Environ. Med. 83, 929–934 (2012).Article 
PubMed 

Google Scholar 
Blue, R. S. et al. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition. Aviat. Space Environ. Med. 85, 721–729 (2014).Article 
PubMed 

Google Scholar 
Blue, R. S., Reyes, D. P., Castleberry, T. L. & Vanderploeg, J. M. Centrifuge-simulated suborbital spaceflight in subjects with cardiac implanted devices. Aerosp. Med. Hum. Perform. 86, 410–413 (2015).Article 
PubMed 

Google Scholar 
Blue, R. S., Blacher, E., Castleberry, T. L. & Vanderploeg, J. M. Centrifuge-simulated suborbital spaceflight in a subject with cardiac malformation. Aerosp. Med. Hum. Perform. 86, 999–1003 (2015).Article 
PubMed 

Google Scholar 
Levin, D. R., Blue, R. S., Castleberry, T. L. & Vanderploeg, J. M. Tolerance of centrifuge-simulated suborbital spaceflight in subjects with implanted insulin pumps. Aerosp. Med. Hum. Perform. 86, 407–409 (2015).Article 
PubMed 

Google Scholar 
Suresh, R., Blue, R. S., Mathers, C., Castleberry, T. L. & Vanderploeg, J. M. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 88, 789–793 (2017).Article 
PubMed 

Google Scholar 
Center of Excellence for Commercial Space Transportation. Flight crew medical standards and spaceflight participant medical acceptance guidelines for commercial space flight. COECST coe-cst.org/wp-content/uploads/2019/02/Vanderploeg-183-flight-crew-medical-standards.pdf (2012).Stepanek, J., Blue, R. S. & Parazynski, S. Space medicine in the era of civilian spaceflight. N. Engl. J. Med. 380, 1053–1060 (2019).Article 
PubMed 

Google Scholar 
Rowe, W. J. The Apollo 15 space syndrome. Circulation 97, 119–120 (1998).Article 
CAS 
PubMed 

Google Scholar 
Lee, S. M. C., Stenger, M. B., Laurie, S. S. & Macias, B. R. Risk of cardiac rhythm problems during spaceflight. NASA Technical Reports Server ntrs.nasa.gov/citations/20170005625 (2017).Hamilton, D. R. in Principles of Clinical Medicine for Space Flight Ch. 16 (eds Barratt, M. R. & Pool, S. L.) 317–359 (Springer, 2008).Aunon-Chancellor, S. M., Pattarini, J. M., Moll, S. & Sargsyan, A. Venous thrombosis during spaceflight. N. Engl. J. Med. 382, 89–90 (2020).Article 
PubMed 

Google Scholar 
Rehnberg, L. et al. Three methods of manual external chest compressions during microgravity simulation. Aviat. Space Environ. Med. 85, 687–693 (2014).Article 
PubMed 

Google Scholar 
Braunecker, S., Douglas, B. & Hinkelbein, J. Comparison of different techniques for in microgravity – a simple mathematic estimation of cardiopulmonary resuscitation quality for space environment. Am. J. Emerg. Med. 33, 920–924 (2015).Article 
CAS 
PubMed 

Google Scholar 
Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 1st edn (Pergamon Press, 1966).McCormick, M., Nordsletten, D. A., Kay, D. & Smith, N. P. Simulating left ventricular fluid–solid mechanics through the cardiac cycle under LVAD support. J. Comput. Phys. 244, 80–96 (2013).Article 

Google Scholar 
Nordsletten, D. et al. Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int. J. Numer. Method. Biomed. Eng. 27, 1017–1039 (2011).Article 

Google Scholar 
Smith, N. et al. euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus. 1, 349–364 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Marsden, A. L. & Kung, E. in Computational Bioengineering Ch. 7 (ed. Zhang, G.) 163–190 (CRC Press, 2015).Gallo, C., Ridolfi, L. & Scarsoglio, S. Cardiovascular deconditioning during long-term spaceflight through multiscale modeling. npj Microgravity 6, 27 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Mohammadyari, P., Gadda, G. & Taibi, A. Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth. Sci. Rep. 11, 4672 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boileau, E. et al. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Method. Biomed. Eng. 31, e02732 (2015).Article 

Google Scholar 
Hughes, T. J. R. & Lubliner, J. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18, 161–170 (1973).Article 

Google Scholar 
Sherwin, S. J., Franke, V., Peiró, J. & Parker, K. One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003).Article 

Google Scholar 
van de Vosse, F. N. & Stergiopulos, N. Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43, 467–499 (2011).Article 

Google Scholar 
Frank, O. The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. J. Mol. Cell. Cardiol. 22, 255–277 (1990).Article 
CAS 
PubMed 

Google Scholar 
Sagawa, K., Lie, R. K. & Schaefer, J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 37: 483-526 (1899). J. Mol. Cell. Cardiol. 22, 253–254 (1990).Article 
CAS 
PubMed 

Google Scholar 
Shi, Y., Lawford, P. & Hose, R. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. Online 10, 33 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).Article 

Google Scholar 
Whittle, R. S. & Diaz-Artiles, A. Gravitational effects on carotid and jugular characteristics in graded head-up and head-down tilt. J. Appl. Physiol. 134, 217–229 (2023).Article 
PubMed 

Google Scholar 
Smith, N. P. A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol. Meas. 25, 863–877 (2004).Article 
PubMed 

Google Scholar 
Huberts, W. et al. What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper. J. Comput. Sci. 24, 68–84 (2018). This paper summarizes the challenges for patient-tailored treatment planning using computational approaches, illustrated using two clinical cases.Article 

Google Scholar 
Saltelli, A. et al. Global Sensitivity Analysis. The Primer (Wiley, 2008).Eck, V. G. et al. A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications. Int. J. Numer. Method. Biomed. Eng. 32, e02755 (2016).Article 

Google Scholar 
Halliday, I. & Morris, P. D. Modelling the effects of gravitational forces on cardiovascular pathophysiology: the potential role of electrical analogue models. Executive summary. UK Civil Aviation Authority. www.caa.co.uk/space/about-us/human-spaceflight-research (2024).Heldt, T., Shim, E. B., Kamm, R. D. & Mark, R. G. Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92, 1239–1254 (2002). This paper describes a whole-body pulsatile model of the tilt-test response, including closed loop regulation and limited comparison with returning astronaut data.Article 
PubMed 

Google Scholar 
Olufsen, M. S. et al. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99, 1523–1537 (2005).Article 
PubMed 

Google Scholar 
Kim, Y. S. et al. Effects of aging on the cerebrovascular orthostatic response. Neurobiol. Aging 32, 344–353 (2011).Article 
PubMed 

Google Scholar 
Keijsers, J. M. T. Numerical analysis of the hemodynamic response to orthostatic stress. Thesis, Technische Universiteit Eindhoven (2017).Blanc, J. J. Syncope: definition, epidemiology, and classification. Cardiol. Clin. 33, 341–345 (2015).Article 
PubMed 

Google Scholar 
Claydon, V. E., Steeves, J. D. & Krassioukov, A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 44, 341–351 (2006).Article 
CAS 
PubMed 

Google Scholar 
Rutan, G. H. et al. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension 19, 508–519 (1992).Article 
CAS 
PubMed 

Google Scholar 
Buckey, J. C. Jr. et al. Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81, 7–18 (1996).Article 
PubMed 

Google Scholar 
van Loon, L. M., Steins, A., Schulte, K. M., Gruen, R. & Tucker, E. M. Computational modeling of orthostatic intolerance for travel to Mars. npj Microgravity 8, 34 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Keith Sharp, M., Batzel, J. J. & Montani, J. P. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration. Eur. J. Appl. Physiol. 113, 1919–1937 (2013). This paper is a review of models of (patho)physiological processes important for the CSOS application, covering literature up to 2013.Article 
CAS 
PubMed 

Google Scholar 
Boyers, D. G., Cuthbertson, J. G. & Luetscher, J. A. Simulation of the human cardiovascular system: a model with normal responses to change of posture, blood loss, transfusion, and autonomic blockade. Simulation 18, 197–206 (1972).Article 

Google Scholar 
Avula, X. J. & Oestreicher, H. L. Mathematical model of the cardiovascular system under acceleration stress. Aviat. Space Environ. Med. 49, 279–286 (1978).CAS 
PubMed 

Google Scholar 
White, R. J. & Blomqvist, C. G. Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85, 738–746 (1998).Article 
CAS 
PubMed 

Google Scholar 
Snyder, M. F. & Rideout, V. C. Computer simulation studies of the venous circulation. IEEE Trans. Biomed. Eng. 16, 325–334 (1969).Article 
CAS 
PubMed 

Google Scholar 
Hyndman, B. W. A digital simulation of the human cardiovascular system. INFOR 10, 8–35 (1972).
Google Scholar 
Croston, R. C. & Fitzjerrell, D. G. Cardiovascular model for the simulation of exercise, lower body negative pressure, and tilt experiments. Model. Simul. 5, 471–476 (1974).
Google Scholar 
Mynard, J. P., Davidson, M. R., Penny, D. J. & Smolich, J. J. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int. J. Numer. Method. Biomed. Eng. 28, 626–641 (2012).Article 
CAS 
PubMed 

Google Scholar 
Korakianitis, T. & Shi, Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med. Eng. Phys. 28, 613–628 (2006). This paper reports a widely used, mathematically succinct description of cardiac pulsation.Article 
PubMed 

Google Scholar 
Walley, K. R. Left ventricular function: time-varying elastance and left ventricular aortic coupling. Crit. Care 20, 270 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Arts, T., Bovendeerd, P. H., Prinzen, F. W. & Reneman, R. S. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys. J. 59, 93–102 (1991).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bovendeerd, P. H., Borsje, P., Arts, T. & van De Vosse, F. N. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann. Biomed. Eng. 34, 1833–1845 (2006).Article 
PubMed 
PubMed Central 

Google Scholar 
Archer, G. T. Computational modelling in the management of patients with aortic valve stenosis. Thesis, University of Sheffield (2020).Stergiopulos, N., Westerhof, B. E. & Westerhof, N. Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. 276, H81–H88 (1999).CAS 
PubMed 

Google Scholar 
Azhari, H. Basics of Biomedical Ultrasound for Engineers (Wiley, 2010).Diaz-Artiles, A., Heldt, T. & Young, L. R. Computational model of cardiovascular response to centrifugation and lower body cycling exercise. J. Appl. Physiol. 127, 1453–1468 (2019). This paper describes a modelling study and also reports carefully curated experimental data on centrifugation combined with exercise used for model validation.Article 
CAS 
PubMed 

Google Scholar 
Blomqvist, C. G. & Stone, H. L. in Handbook of Physiology, Section 2: The Cardiovascular System Vol. III, Pt 2, Ch. 28 (eds Hamilton, W. F. & Dow, P.) 1025–1063 (Williams & Wilkins, 1983).Beneken, J. & DeWit, B. in Physical Bases of Circulatory Transport: Regulation and Exchange. Ch. 1 (eds Reeve, E. B. & Guyton, A. C.) 1–45 (Saunders, 1967).Srinivasan, R. S., Simanook, K. E. & Charles, J. B. Computer simulation analysis of the effects of countermeasures for re-entry orthostatic intolerance. Physiologist 35, S165–S168 (1992).CAS 
PubMed 

Google Scholar 
Broskey, J. & Sharp, M. K. Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model. Ann. Biomed. Eng. 35, 1800–1811 (2007).Article 
PubMed 

Google Scholar 
Coats, B. W. & Sharp, M. K. Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars. Ann. Biomed. Eng. 38, 1119–1131 (2010). This paper describes the application of a cardiovascular, non-pulsatile, seven compartment model to compare centrifuge and gravitational conditions in male and female individuals, including capillary filtration effects.Article 
PubMed 

Google Scholar 
Etter, K. E., Goswami, N. & Sharp, M. K. Modelling of cardiovascular response to graded orthostatic stress: role of capillary filtration. Eur. J. Clin. Invest. 41, 807–819 (2011).Article 
PubMed 

Google Scholar 
Olufsen, M. S. et al. Modeling baroreflex regulation of heart rate during orthostatic stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1355–R1368 (2006).Article 
CAS 
PubMed 

Google Scholar 
Olufsen, M. S., Alston, A. V., Tran, H. T., Ottesen, J. T. & Novak, V. Modeling heart rate regulation – part I: Sit-to-stand versus head-up tilt. Cardiovasc. Eng. 8, 73–87 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Green, J. F. & Miller, N. C. A model describing the response of the circulatory system to acceleration stress. Ann. Biomed. Eng. 1, 455–467 (1973).Article 
CAS 
PubMed 

Google Scholar 
Ottesen, J. T., Novak, V. & Olufsen, M. S. in Mathematical Modeling and Validation in Physiology: Applications to the Cardiovascular and Respiratory Systems. Ch. 10 (eds Batzel, J. J., Bachar, M. & Kappel, F.) 177–213 (Springer, 2013). This chapter reports the patient-specific model validation under sit-to-stand and head-up tilt conditions, including sensitivity analysis and non-linear optimization.Ursino, M. & Magosso, E. Role of short-term cardiovascular regulation in heart period variability: a modeling study. Am. J. Physiol. Heart Circ. Physiol. 284, H1479–H1493 (2003).Article 
CAS 
PubMed 

Google Scholar 
Ursino, M. & Lodi, C. A. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. Am. J. Physiol. 274, H1715–H1728 (1998).CAS 
PubMed 

Google Scholar 
Ursino, M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 275, H1733–H1747 (1998). This paper reports a physiologically complete description of the baroreflex regulation mechanism for the CSOS application.CAS 
PubMed 

Google Scholar 
Melchior, F. M., Srinivasan, R. S. & Charles, J. B. Mathematical modeling of human cardiovascular system for simulation of orthostatic response. Am. J. Physiol. Heart Circ. Physiol. 262, H1920–H1933 (1992). This is a landmark paper that sets out a potential modelling strategy encompassing regulation, mathematical modelling and application to short-term orthostatic responses of the cardiovascular system.Article 
CAS 

Google Scholar 
Leaning, M. S., Pullen, H. E., Carson, E. R. & Finkelstein, L. Modelling a complex biological system: the human cardiovascular system – 1. Methodology and model description. Trans. Inst. Meas. Control. 5, 71–86 (1983).Article 

Google Scholar 
Leaning, M. S. et al. Modelling a complex biological system: the human cardiovascular system – 2. Model validation, reduction and development. Trans. Inst. Meas. Control. 5, 87–98 (1983).Article 

Google Scholar 
Peterson, K., Ozawa, E. T., Pantalos, G. M. & Sharp, M. K. Numerical simulation of the influence of gravity and posture on cardiac performance. Ann. Biomed. Eng. 30, 247–259 (2002).Article 
PubMed 

Google Scholar 
Heldt, T., Long, B., Verghese, G. C., Szolovits, P. & Mark, R. G. Integrating data, models, and reasoning in critical care. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 350–353 (2006).Article 
PubMed 

Google Scholar 
Whittle, R. S. & Diaz-Artiles, A. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis. J. Appl. Physiol. 130, 1983–2001 (2021). This paper is the first to provide a sensitivity analysis of a model for assessing the cardiovascular response to gravitational loading conditions.Article 
PubMed 
PubMed Central 

Google Scholar 
Jaron, D., Moore, T. W. & Chu, C. L. A cardiovascular model for studying impairment of cerebral function during +Gz stress. Aviat. Space Environ. Med. 55, 24–31 (1984).CAS 
PubMed 

Google Scholar 
Jaron, D., Moore, T. W. & Bai, J. Cardiovascular responses to acceleration stress: a computer simulation. Proc. IEEE 76, 700–707 (1988). This is a report of modelling the effects of acceleration stress on peripheral and central vision, including the venous system, physiological compensatory mechanisms, and the effects of protective devices and manoeuvres.Article 

Google Scholar 
Al-Dahan, M. I., Leaning, M. S., Carson, E. R., Hill, D. W. & Finkelstein, L. The validation of complex, unidentifiable models of the cardiovascular system. IFAC Proc. Vol. 18, 1213–1218 (1985).Article 

Google Scholar 
Ursino, M. & Magosso, E. Acute cardiovascular response to isocapnic hypoxia. I. A mathematical model. Am. J. Physiol. Heart Circ. Physiol. 279, H149–H165 (2000).Article 
CAS 
PubMed 

Google Scholar 
Ellwein, L. M. et al. Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. Math. Biosci. 241, 56–74 (2013).Article 
CAS 
PubMed 

Google Scholar 
Fernandes, L. G., Trenhago, P. R., Feijoo, R. A. & Blanco, P. J. Integrated cardiorespiratory system model with short timescale control mechanisms. Int. J. Numer. Method. Biomed. Eng. 37, e3332 (2021).Article 
PubMed 

Google Scholar 
Fresiello, L., Meyns, B., Di Molfetta, A. & Ferrari, G. A model of the cardiorespiratory response to aerobic exercise in healthy and heart failure conditions. Front. Physiol. 7, 189 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Summers, R. L., Platts, S., Myers, J. G. & Coleman, T. G. Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight. Theor. Biol. Med. Model. 7, 8 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Calvo, M. et al. Model-based analysis of the autonomic response to head-up tilt testing in Brugada syndrome. Comput. Biol. Med. 103, 82–92 (2018).Article 
PubMed 

Google Scholar 
Fonoberova, M. et al. A computational physiology approach to personalized treatment models: the beneficial effects of slow breathing on the human cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 307, H1073–H1091 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baraikan, A. A. et al. Modelling the hemodynamics of coronary ischemia. Fluids 8, 159 (2023).Article 

Google Scholar 
Bjordalsbakke, N. L., Sturdy, J. T., Hose, D. R. & Hellevik, L. R. Parameter estimation for closed-loop lumped parameter models of the systemic circulation using synthetic data. Math. Biosci. 343, 108731 (2022).Article 
PubMed 

Google Scholar 
Hann, C. E. et al. Unique parameter identification for cardiac diagnosis in critical care using minimal data sets. Comput. Methods Prog. Biomed. 99, 75–87 (2010).Article 
CAS 

Google Scholar 
Le Rolle, V. L., Hernández, A. I., Richard, P.-Y. & Carrault, G. An autonomic nervous system model applied to the analysis of orthostatic tests. Model. Simul. Eng. 2008, 2 (2008).
Google Scholar 
Melchior, F. M., Srinivasan, R. S., Thullier, P. H. & Clere, J. M. Simulation of cardiovascular response to lower body negative pressure from 0 to −40 mmHg. J. Appl. Physiol. 77, 630–640 (1994).Article 
CAS 
PubMed 

Google Scholar 
Pant, S. et al. Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability. J. R. Soc. Interface 14, 20160513 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Pappalardo, F. et al. Toward a regulatory pathway for the use of in silico trials in the CE marking of medical devices. IEEE J. Biomed. Health Inform. 26, 5282–5286 (2022).Article 
PubMed 

Google Scholar 
Bubak, M. et al. The EurValve model execution environment. Interface Focus. 11, 20200006 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Coveney, P. V., Groen, D. & Hoekstra, A. G. Reliability and reproducibility in computational science: implementing validation, verification and uncertainty quantification in silico. Philos. Trans. A Math. Phys. Eng. Sci. 379, 20200409 (2021).PubMed 

Google Scholar 
American Society of Medical Engineers. Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices. VV40 – 2018 (ASME, 2018).Tatka, L. T., Smith, L. P., Hellerstein, J. L. & Sauro, H. M. Adapting modeling and simulation credibility standards to computational systems biology. J. Transl. Med. 21, 501 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Schölzel, C., Blesius, V., Ernst, G. & Dominik, A. Characteristics of mathematical modeling languages that facilitate model reuse in systems biology: a software engineering perspective. npj Syst. Biol. Appl. 7, 27 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Hunter, P. & Nielsen, P. A strategy for integrative computational physiology. Physiology 20, 316–325 (2005).Article 
CAS 
PubMed 

Google Scholar 
Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).Article 
CAS 
PubMed 

Google Scholar 
Hester, R. L. et al. HumMod: a modeling environment for the simulation of integrative human physiology. Front. Physiol. 2, 12 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Crozier, A. et al. The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: a computational modelling study. J. Mol. Cell. Cardiol. 96, 93–100 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chaudhuri, K., Pletzer, A. & Smith, N. P. A predictive patient-specific computational model of coronary artery bypass grafts for potential use by cardiac surgeons to guide selection of graft configurations. Front. Cardiovasc. Med. 9, 953109 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Abdelrahman, K. M. et al. Coronary computed tomography angiography from clinical uses to emerging technologies: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 76, 1226–1243 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Eslami, P. et al. Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. Int. J. Cardiovasc. Imaging 36, 2319–2333 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Siika, A., Lindquist Liljeqvist, M., Hultgren, R., Gasser, T. C. & Roy, J. Aortic lumen area is increased in ruptured abdominal aortic aneurysms and correlates to biomechanical rupture risk. J. Endovasc. Ther. 25, 750–756 (2018).Article 
PubMed 

Google Scholar 
Vascops. A4clinics RE. Vascops www.vascops.com (2024).HeartFlow. Revolutionizing precision heart care. Heartflow www.heartflow.com (2024).Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol. 16, 100–111 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pappalardo, F., Russo, G., Tshinanu, F. M. & Viceconti, M. In silico clinical trials: concepts and early adoptions. Brief. Bioinform. 20, 1699–1708 (2019).Article 
CAS 
PubMed 

Google Scholar 
Viceconti, M. et al. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Driessen, R. S. et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J. Am. Coll. Cardiol. 73, 161–173 (2019).Article 
PubMed 

Google Scholar 
US Food and Drug Administration. Promoting innovation in medical product assessment: a risk-based framework for evaluating computational models for regulatory decision-making. FDA www.fda.gov/drugs/spotlight-cder-science/promoting-innovation-medical-product-assessment-risk-based-framework-evaluating-computational-models (2020).Markl, M. et al. Advanced flow MRI: emerging techniques and applications. Clin. Radiol. 71, 779–795 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krittian, S. B. et al. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med. Image Anal. 16, 1029–1037 (2012).Article 
PubMed 

Google Scholar 
Sokolski, M. et al. Comparison of invasive and non-invasive measurements of haemodynamic parameters in patients with advanced heart failure. J. Cardiovasc. Med. 12, 773–778 (2011).Article 

Google Scholar 
Saugel, B. et al. Continuous noninvasive pulse wave analysis using finger cuff technologies for arterial blood pressure and cardiac output monitoring in perioperative and intensive care medicine: a systematic review and meta-analysis. Br. J. Anaesth. 125, 25–37 (2020).Article 
PubMed 

Google Scholar 
Truijen, J., Bundgaard-Nielsen, M. & van Lieshout, J. J. A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress. Eur. J. Appl. Physiol. 109, 141–157 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Mosqueda-Garcia, R., Furlan, R., Tank, J. & Fernandez-Violante, R. The elusive pathophysiology of neurally mediated syncope. Circulation 102, 2898–2906 (2000).Article 
CAS 
PubMed 

Google Scholar 
Hinghofer-Szalkay, H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur. J. Appl. Physiol. 111, 163–174 (2011).Article 
PubMed 

Google Scholar 
Skytioti, M., Sovik, S. & Elstad, M. Respiratory pump maintains cardiac stroke volume during hypovolemia in young, healthy volunteers. J. Appl. Physiol. 124, 1319–1325 (2018).Article 
CAS 
PubMed 

Google Scholar 
McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).Article 
CAS 
PubMed 

Google Scholar 
Conte, M. S. et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur. J. Vasc. Endovasc. Surg. 58, 3S–125S.e40 (2019).Article 

Google Scholar 
Guerin, C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hargens, A. R. & Richardson, S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir. Physiol. Neurobiol. 169, S30–S33 (2009).Article 
PubMed 

Google Scholar 
Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).Article 
PubMed 

Google Scholar 
Thornton, W. E., Moore, T. P. & Pool, S. L. Fluid shifts in weightlessness. Aviat. Space Environ. Med. 58, A86–A90 (1987).CAS 
PubMed 

Google Scholar 
Moore, T. P. & Thornton, W. E. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat. Space Environ. Med. 58, A91–A96 (1987).CAS 
PubMed 

Google Scholar 
Kirsch, K. A., Baartz, F. J., Gunga, H. C. & Rocker, L. Fluid shifts into and out of superficial tissues under microgravity and terrestrial conditions. Clin. Investig. 71, 687–689 (1993).Article 
CAS 
PubMed 

Google Scholar 
Olabi, A. A., Lawless, H. T., Hunter, J. B., Levitsky, D. A. & Halpern, B. P. The effect of microgravity and space flight on the chemical senses. J. Food Sci. 67, 468–478 (2002).Article 
CAS 
PubMed 

Google Scholar 
Inglesby, D. C. et al. Spaceflight-associated changes in the opacification of the paranasal sinuses and mastoid air cells in astronauts. JAMA Otolaryngol. Head. Neck Surg. 146, 571–577 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Goodman, L. S. & LeSage, S. Impairment of cardiovascular and vasomotor responses during tilt table simulation of “push-pull” maneuvers. Aviat. Space Environ. Med. 73, 971–979 (2002).PubMed 

Google Scholar 
Kirsch, K. A. et al. Venous pressure in man during weightlessness. Science 225, 218–219 (1984).Article 
CAS 
PubMed 

Google Scholar 
Buckey, J. C. et al. Central venous pressure in space. N. Engl. J. Med. 328, 1853–1854 (1993).Article 
CAS 
PubMed 

Google Scholar 
Beard, D. A. & Feigl, E. O. Understanding Guyton’s venous return curves. Am. J. Physiol. Heart Circ. Physiol. 301, H629–H633 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Norsk, P., Asmar, A., Damgaard, M. & Christensen, N. J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 593, 573–584 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Norsk, P. et al. Vasorelaxation in space. Hypertension 47, 69–73 (2006).Article 
CAS 
PubMed 

Google Scholar 
Petersen, L. G. & Ogoh, S. Gravity, intracranial pressure, and cerebral autoregulation. Physiol. Rep. 7, e14039 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Norsk, P. Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol. 228, e13434 (2020).Article 
CAS 

Google Scholar 
Ertl, A. C. et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J. Physiol. 538, 321–329 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Estenne, M., Gorini, M., Van Muylem, A., Ninane, V. & Paiva, M. Rib cage shape and motion in microgravity. J. Appl. Physiol. 73, 946–954 (1992).Article 
CAS 
PubMed 

Google Scholar 
Prisk, G. K., Guy, H. J., Elliott, A. R., Deutschman, R. A. III & West, J. B. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J. Appl. Physiol. 75, 15–26 (1993).Article 
CAS 
PubMed 

Google Scholar 
Norsk, P. & Christensen, N. J. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space. Respir. Physiol. Neurobiol. 169, S26–S29 (2009).Article 
PubMed 

Google Scholar 
Jirak, P. et al. How spaceflight challenges human cardiovascular health. Eur. J. Prev. Cardiol. 29, 1399–1411 (2022).Article 
PubMed 

Google Scholar 
Scott, J. M., Stoudemire, J., Dolan, L. & Downs, M. Leveraging spaceflight to advance cardiovascular research on Earth. Circ. Res. 130, 942–957 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baran, R. et al. The cardiovascular system in space: focus on in vivo and in vitro studies. Biomedicines 10, 59 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pump, B., Videbaek, R., Gabrielsen, A. & Norsk, P. Arterial pressure in humans during weightlessness induced by parabolic flights. J. Appl. Physiol. 87, 928–932 (1999).Article 
CAS 
PubMed 

Google Scholar 
Bimpong-Buta, N. Y. et al. Comprehensive analysis of macrocirculation and microcirculation in microgravity during parabolic flights. Front. Physiol. 11, 960 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Fritsch-Yelle, J. M., Charles, J. B., Jones, M. M. & Wood, M. L. Microgravity decreases heart rate and arterial pressure in humans. J. Appl. Physiol. 80, 910–914 (1996).Article 
CAS 
PubMed 

Google Scholar 
Seibert, F. S. et al. The effect of microgravity on central aortic blood pressure. Am. J. Hypertens. 31, 1183–1189 (2018).Article 
PubMed 

Google Scholar 
Ogoh, S. et al. Effect of an acute increase in central blood volume on cerebral hemodynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R902–R911 (2015).Article 
CAS 
PubMed 

Google Scholar 
Cuomo, J. R., Sharma, G. K., Conger, P. D. & Weintraub, N. L. Novel concepts in radiation-induced cardiovascular disease. World J. Cardiol. 8, 504–519 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Tapio, S. Pathology and biology of radiation-induced cardiac disease. J. Radiat. Res. 57, 439–448 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Little, M. P. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat. Environ. Biophys. 52, 435–449 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles