Real samples sensitive dopamine sensor based on poly 1,3-benzothiazol-2-yl((4-carboxlicphenyl)hydrazono)acetonitrile on a glassy carbon electrode

Heien, M. L. A. V. et al. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. 102, 10023–10028 (2005).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wightman, R. M., May, L. J. & Michael, A. C. Detection of dopamine dynamics in the brain. Anal. Chem. 60, 769A-779A (1988).Article 
CAS 
PubMed 

Google Scholar 
Cao, Q., Puthongkham, P. & Venton, B. J. Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. Anal. Methods 11, 247–261 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sukanya, S. D., Swamy, B. E. K., Shashikumara, J. K., Sharma, S. C. & Hariprasad, S. A. Poly (Orange CD) sensor for paracetamol in presence of folic acid and dopamine. Sci. Rep. 11, 22332 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Volkow, N. D., Wang, G.-J., Fowler, J. S., Tomasi, D. & Telang, F. Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci. 108, 15037–15042 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Palanisamy, S. et al. Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohydr. Polym. 135, 267–273 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shashikumara, J. K., Swamy, B. E. K., Sharma, S. C., Hariprasad, S. A. & Mohanty, K. Poly (red DSBR)/Al-ZnO modified carbon paste electrode sensor for dopamine: A voltammetric study. Sci. Rep. 11, 14310 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beitollahi, H., Nejad, F. G. & Shakeri, S. GO/Fe3O4@SiO2 core–shell nanocomposite-modified graphite screen-printed electrode for sensitive and selective electrochemical sensing of dopamine and uric acid. Anal. Methods 9, 5541–5549 (2017).Article 
CAS 

Google Scholar 
Chang, Y. & Venton, B. J. Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection. Anal. Methods 12, 2893–2902 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mphuthi, N. G., Adekunle, A. S., Fayemi, O. E., Olasunkanmi, L. O. & Ebenso, E. E. Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Sci. Rep. 7, 43181 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ko, S. H., Kim, S. W. & Lee, Y. J. Flexible sensor with electrophoretic polymerized graphene oxide/PEDOT:PSS composite for voltammetric determination of dopamine concentration. Sci. Rep. 11, 21101 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Devlin, T. M. Textbook of biochemistry with clinical correlations (Wiley, 2010).
Google Scholar 
Pushpanjali, P. A. et al. Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly(L-Leucine) layered carbon nanotube paste electrode. Surf. Interfaces 24, 101154 (2021).Article 
CAS 

Google Scholar 
Kienast, T. & Heinz, A. Dopamine and the diseased brain. CNS Neurol. Disord. Targets (Former. Curr Drug Targets-CNS Neurol. Disord.) 5, 109–131 (2006).Article 
CAS 

Google Scholar 
Chen, X. et al. β-Cyclodextrin functionalized 3D reduced graphene oxide composite-based electrochemical sensor for the sensitive detection of dopamine. RSC Adv. 11, 28052–28060 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, D., Xie, H., Lu, H., Li, W. & Zhang, Q. Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag (HIO6) 2] 5−–luminol chemiluminescence detection. Biomed. Chromatogr. 30, 1458–1466 (2016).Article 
CAS 
PubMed 

Google Scholar 
Roychoudhury, A., Francis, K. A., Patel, J., Jha, S. K. & Basu, S. A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Adv. 10, 25487–25495 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Keerthi, M., Boopathy, G., Chen, S.-M., Chen, T.-W. & Lou, B.-S. A core-shell molybdenum nanoparticles entrapped f-MWCNTs hybrid nanostructured material based non-enzymatic biosensor for electrochemical detection of dopamine neurotransmitter in biological samples. Sci. Rep. 9, 13075 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Abbaspour, A., Khajehzadeh, A. & Ghaffarinejad, A. A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: Development of a dopamine biosensor. Analyst 134, 1692–1698 (2009).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Chen, J.-L., Yan, X.-P., Meng, K. & Wang, S.-F. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal. Chem. 83, 8787–8793 (2011).Article 
CAS 
PubMed 

Google Scholar 
Fritzen-Garcia, M. B. et al. Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection. Sens. Actuators B Chem. 182, 264–272 (2013).Article 
ADS 
CAS 

Google Scholar 
Pavličková, M. et al. Facile fabrication of screen-printed MoS2 electrodes for electrochemical sensing of dopamine. Sci. Rep. 12, 11900 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gualandi, I. et al. Selective detection of dopamine with an all PEDOT:PSS organic electrochemical transistor. Sci. Rep. 6, 35419 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Demirkan, B. et al. Composites of bimetallic platinum-cobalt alloy nanoparticles andreduced graphene oxide for electrochemical determination of ascorbic acid, dopamine, and uric acid. Sci. Rep. 9, 12258 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Shashikumara, J. K. et al. Effect of RGO-Y2O3 and RGO-Y2O3:Cr3+ nanocomposite sensor for dopamine. Sci. Rep. 11, 9372 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Raril, C., Manjunatha, J. G. & Tigari, G. Low-cost voltammetric sensor based on an anionic surfactant modified carbon nanocomposite material for the rapid determination of curcumin in natural food supplement. Instrum. Sci. Technol. 48, 561–582 (2020).Article 
CAS 

Google Scholar 
Nassar, A. M., Salah, H., Hashem, N., Khodari, M. & Assaf, H. F. Electrochemical sensor based on CuO nanoparticles fabricated from copper wire recycling-loaded carbon paste electrode for excellent detection of theophylline in pharmaceutical formulations. Electrocatalysis 13, 154–164 (2022).Article 
CAS 

Google Scholar 
Abd-Elsabour, M., Abd-Elsabur, K. M., Assaf, F. H. & Hasan, I. An electrochemical sensor based on poly (methyl orange) modified glassy carbon electrode for simultaneous determination of vitamins B2 and C in aqueous solution. Anal. Bioanal. Chem. Res. 9, 259–268 (2022).CAS 

Google Scholar 
Abd-Elsabour, M. et al. A novel electrochemical sensor for detection of nicotine in tobacco products based on graphene oxide nanosheets conjugated with (1,2-naphthoquinone-4-sulphonic acid) modified glassy carbon electrode. Nanomaterials 12(14), 2354 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Assaf, H. F., Shamroukh, A. A., Rabie, E. M. & Khodari, M. Green synthesis of CaO nanoparticles conjugated with l-Methionine polymer film to modify carbon paste electrode for the sensitive detection of levofloxacin antibiotic. Mater. Chem. Phys. 294, 127054 (2023).Article 
CAS 

Google Scholar 
Redivo, L. et al. Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages. R. Soc. Open Sci. 5, 172146 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, B. et al. Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens. Bioelectron. 67, 121–128 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ebead, Y. H., Selim, M. A. & Ibrahim, S. A. Solvatochromic, acid–base features and time effect of some azo dyes derived from 1, 3-benzothiazol-2-ylacetonitrile: Experimental and semiempirical investigations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 75, 760–768 (2010).Article 
ADS 
CAS 

Google Scholar 
Alsoghier, H. M. et al. NMR spectroscopic investigation of benzothiazolylacetonitrile azo dyes: CR7 substitution effect and semiempirical study. Results Chem. 3, 100088 (2021).Article 
CAS 

Google Scholar 
Mahmood, A., Tahir, M. H., Irfan, A., Al-Sehemi, A. G. & Al-Assiri, M. S. Heterocyclic azo dyes for dye sensitized solar cells: A quantum chemical study. Comput. Theor. Chem. 1066, 94–99 (2015).Article 
CAS 

Google Scholar 
Harisha, S., Keshavayya, J., Swamy, B. E. K. & Viswanath, C. C. Dyes and pigments synthesis, characterization and electrochemical studies of azo dyes derived from barbituric acid. Dye. Pigment. 136, 742–753 (2017).Article 
CAS 

Google Scholar 
Özkütük, M., İpek, E., Aydıner, B., Mamaş, S. & Seferoğlu, Z. Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin. J. Mol. Struct. 1108, 521–532 (2016).Article 
ADS 

Google Scholar 
Kiani, S., Zakerhamidi, M. S. & Tajalli, H. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes. Opt. Mater. 55, 121–129 (2016).Article 
ADS 
CAS 

Google Scholar 
Abuelwafa, A. A., Elnobi, S., Santos, M. A. & Alsoghier, H. M. A novel organic semiconductor 4-phenylthiazol-2-yl-(phenylhydrazono) acetonitrile (PTPA) thin films: Synthesis, optical and electrical properties. Sci. Rep. 13, 12973 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, Y.-X. et al. Recent developments in benzothiazole-based iridium(III) complexes for application in OLEDs as electrophosphorescent emitters. Org. Electron. 66, 126–135 (2019).Article 
ADS 
CAS 

Google Scholar 
Alsoghier, H. M. et al. NMR spectroscopic, linear and non-linear optical properties of 1,3-benzothiazol-2-yl-(phenylhydrazono)acetonitrile (BTPA) azo dye. J. Mol. Struct. 1179, 315–324 (2019).Article 
ADS 
CAS 

Google Scholar 
Castro, M. C. R. et al. Design, synthesis and evaluation of redox, second order nonlinear optical properties and theoretical DFT studies of novel bithiophene azo dyes functionalized with thiadiazole acceptor groups. Dye. Pigment. 95, 392–399 (2012).Article 
CAS 

Google Scholar 
Zeng, S. et al. A benzothiazole-based chemosensor for significant fluorescent turn-on and ratiometric detection of Al3+ and its application in cell imaging. Inorg. Chim. Acta 486, 654–662 (2019).Article 
CAS 

Google Scholar 
Luo, C. et al. Diode effect caused by sequence of benzothiazole on optical properties. Tetrahedron 73, 3066–3073 (2017).Article 
CAS 

Google Scholar 
Abdalhameed, M. M. et al. Structure-activity relationships of benzothiazole GPR35 antagonists. Bioorg. Med. Chem. Lett. 27, 612–615 (2017).Article 
CAS 
PubMed 

Google Scholar 
Alsantali, R. I. et al. Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications. Dye. Pigment. 199, 110050 (2022).Article 
CAS 

Google Scholar 
Mahdi, N., Roushani, M. & Karazan, Z. M. Electrochemical sensor based on molecularly imprinted copolymer for selective and simultaneous determination of riboflavin, dopamine, and L-tryptophan. J. Mol. Recognit. 36, e3053 (2023).Article 
CAS 
PubMed 

Google Scholar 
Hareesha, N. & Manjunatha, J. G. Electro-oxidation of formoterol fumarate on the surface of novel poly(thiazole yellow-G) layered multi-walled carbon nanotube paste electrode. Sci. Rep. 11, 12797 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rananaware, A. et al. Photomodulation of fluoride ion binding through anion-π interactions using a photoswitchable azobenzene system. Sci. Rep. 6, 22928 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Badahdah, K. Arylhydrazononitriles as building blocks in heterocyclic synthesis: Synthesis of new benzothiazolyl-1,2,3-triazole amines and -1,2,3-triazol-4-yl-1,3,4-thiadiazol-5-ylamines. Heterocycles 75, 1623–1630 (2008).Article 
CAS 

Google Scholar 
Abd-Elsabour, M. et al. Green electro-organic synthesis of a novel catechol derivative based on o-benzoquinone nucleophilic addition. New J. Chem. 47, 131–139 (2023).Article 
CAS 

Google Scholar 
Karazan, Z. M. & Roushani, M. A new method for electrochemical determination of Hippuric acid based on molecularly imprinted copolymer. Talanta 246, 123491 (2022).Article 
CAS 
PubMed 

Google Scholar 
Raposo, M. M. M., Castro, M. C. R., Belsley, M. & Fonseca, A. M. C. Push–pull bithiophene azo-chromophores bearing thiazole and benzothiazole acceptor moieties: Synthesis and evaluation of their redox and nonlinear optical properties. Dye. Pigment. 91, 454–465 (2011).Article 
CAS 

Google Scholar 
Raposo, M. M. M., Castro, M. C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. Design, synthesis, and characterization of the electrochemical, nonlinear optical properties, and theoretical studies of novel thienylpyrrole azo dyes bearing benzothiazole acceptor groups. Tetrahedron 67, 5189–5198 (2011).Article 
CAS 

Google Scholar 
Podsiadły, R. et al. The relationship between the electrochemical and photochemical reduction of some azo dyes derived from 2-aminobenzothiazole. J. Photochem. Photobiol. A Chem. 171, 69–76 (2005).Article 

Google Scholar 
Mazloum-Ardakani, M. et al. Voltammetric determination of dopamine at the surface of TiO2 nanoparticles modified carbon paste electrode. Int. J. Electrochem. Sci 5, 147–157 (2010).Article 
CAS 

Google Scholar 
Wang, H.-S., Li, T.-H., Jia, W.-L. & Xu, H.-Y. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly (3-methylthiophene) modified electrode. Biosens. Bioelectron. 22, 664–669 (2006).Article 
PubMed 

Google Scholar 
Mirzaei Karazan, Z., Roushani, M. & Jafar Hoseini, S. Simultaneous electrochemical sensing of heavy metal ions (Zn2+, Cd2+, Pb2+, and Hg2+) in food samples using a covalent organic framework/carbon black modified glassy carbon electrode. Food Chem. 442, 138500 (2024).Article 
CAS 
PubMed 

Google Scholar 
Reddaiah, K., Reddy, T. M. & Raghu, P. Electrochemical investigation of L-dopa and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: A voltammetric study. J. Electroanal. Chem. 682, 164–171 (2012).Article 
CAS 

Google Scholar 
Giribabu, K., Haldorai, Y. & Rethinasabapathy, M. Glassy carbon electrode modified with poly (methyl orange) as an electrochemical platform for the determination of 4-nitrophenol at nanomolar levels. Curr. Appl. Phys. 17, 1114–1119 (2017).Article 
ADS 

Google Scholar 
Pushpanjali, P. A., Manjunatha, J. G., Amrutha, B. M. & Hareesha, N. Development of carbon nanotube-based polymer-modified electrochemical sensor for the voltammetric study of Curcumin. Mater. Res. Innov. 25, 412–420 (2021).Article 
CAS 

Google Scholar 
Rabie, E. M., Shamroukh, A. A., Assaf, H. F. & Khodari, M. A novel sensor based on calcium oxide fabricated from eggshell waste conjugated with L- serine polymer film modified carbon paste electrode for sensitive detection of moxifloxacin in human serum and pharmaceutical constituents. Sens. Actuators A Phys. 356, 114351 (2023).Article 
CAS 

Google Scholar 
Khodari, M., Assaf, H. F., Shamroukh, A. A. & Rabie, E. M. Fabrication of an electrochemical sensor based on eggshell waste recycling for the voltammetric simultaneous detection of the antibiotics ofloxacin and ciprofloxacin. BMC Chem. 17, 131 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. Analytical electrochemistry (Wiley, 2023).
Google Scholar 
Panapimonlawat, T., Phanichphant, S. & Sriwichai, S. Electrochemical dopamine biosensor based on poly (3-aminobenzylamine) layer-by-layer self-assembled multilayer thin film. Polymers 13, 1488 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hasanpour, F., Nekoeinia, M., Semnani, A. & Shirazinia, R. Synthesis of semicarbazide catechol derivative as a potential electrode modifier: Application in electrocatalysis of catechol amine drugs. Chem. Pap. 73, 2081–2089 (2019).Article 
CAS 

Google Scholar 
Chitravathi, S., Swamy, B. E. K., Mamatha, G. P. & Sherigara, B. S. Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid. J. Electroanal. Chem. 667, 66–75 (2012).Article 
CAS 

Google Scholar 
Maheshwaran, S. et al. Rationally designed f-MWCNT-coated bismuth molybdate (f-MWCNT@ BMO) nanocomposites for the voltammetric detection of biomolecule dopamine in biological samples. Microchim. Acta 188, 315 (2021).Article 
CAS 

Google Scholar 
Li, Y. et al. A novel electrochemical biomimetic sensor based on poly (Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta 162, 80–89 (2017).Article 
PubMed 

Google Scholar 
Qian, L., Thiruppathi, A. R., Elmahdy, R., van der Zalm, J. & Chen, A. Graphene-oxide-based electrochemical sensors for the sensitive detection of pharmaceutical drug naproxen. Sensors 20, 1252 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Feng, S., Yan, M., Xue, Y., Huang, J. & Yang, X. An electrochemical sensor for sensitive detection of dopamine based on a COF/Pt/MWCNT–COOH nanocomposite. Chem. Commun. 58, 6092–6095 (2022).Article 
CAS 

Google Scholar 
Erçarıkcı, E., Aksu, Z., Topçu, E. & Kıranşan, K. D. ZnS nanoparticles-decorated composite graphene paper: A novel flexible electrochemical sensor for detection of dopamine. Electroanalysis 34, 91–102 (2022).Article 

Google Scholar 
Ni, M. et al. A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem. J. 178, 107410 (2022).Article 
CAS 

Google Scholar 
Zhang, T. et al. Molecularly imprinted Ni-polyacrylamide-based electrochemical sensor for the simultaneous detection of dopamine and adenine. Anal. Chim. Acta 1202, 339689 (2022).Article 
CAS 
PubMed 

Google Scholar 
Moallem, Q. A. & Beitollahi, H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem. J. 177, 107261 (2022).Article 

Google Scholar 
Wang, M. et al. A novel triazine-based covalent organic framework combined with AuNPs and reduced graphene oxide as an electrochemical sensing platform for the simultaneous detection of uric acid, dopamine and ascorbic acid. Coll. Surf. A Physicochem. Eng. Asp. 634, 127928 (2022).Article 
CAS 

Google Scholar 
Kim, D.-S. et al. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep. 8, 14049 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Choo, S.-S. et al. Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors 17, 861 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Guo, D.-J. & Jin, M. Electrocatalytic oxidation and the mechanism of dopamine on a MWNT-modified glassy carbon electrode. Russ. J. Electrochem. 49, 200–202 (2013).Article 
CAS 

Google Scholar 
Özcan, A. & Şahin, Y. Selective and sensitive voltammetric determination of dopamine in blood by electrochemically treated pencil graphite electrodes. Electroanalysis 21, 2363–2370 (2009).Article 

Google Scholar 

Hot Topics

Related Articles