Recycled micro-sized silicon anode for high-voltage lithium-ion batteries

Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).Article 
CAS 

Google Scholar 
Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).Article 
CAS 

Google Scholar 
Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).Article 
CAS 

Google Scholar 
Wang, X., Tang, S., Guo, W., Fu, Y. & Manthiram, A. Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Mater. Today 50, 259–275 (2021).Article 
CAS 

Google Scholar 
Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).Article 
CAS 

Google Scholar 
He, Y. et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 16, 1113–1120 (2021).Article 
CAS 

Google Scholar 
Zhao, Z. et al. Revival of microparticular silicon for superior lithium storage. Adv. Energy Mater. 13, 2300367–2300382 (2023).Article 
CAS 

Google Scholar 
Wang, J. et al. Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61, 404–410 (2019).Article 
CAS 

Google Scholar 
Wu, H. et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12, 904–909 (2012).Article 
CAS 

Google Scholar 
Wang, J. & Cui, Y. Electrolytes for microsized silicon. Nat. Energy 5, 361–362 (2020).Article 
CAS 

Google Scholar 
Chen, F. et al. 1000 Wh L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl Sci. Rev. 8, nwab012 (2021).Article 
CAS 

Google Scholar 
Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029–15037 (2016).Article 
CAS 

Google Scholar 
Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).Article 
CAS 

Google Scholar 
Choi, S., Kwon, T. W., Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).Article 
CAS 

Google Scholar 
Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).Article 
CAS 

Google Scholar 
Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).Article 
CAS 

Google Scholar 
Xu, Z. et al. Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961 (2018).Article 
CAS 

Google Scholar 
Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).Article 
CAS 

Google Scholar 
Munaoka, T. et al. Ionically conductive self‐healing binder for low cost Si microparticles anodes in Li‐Ion batteries. Adv. Energy Mater. 8, 1703138–1703149 (2018).Article 

Google Scholar 
Ko, S. et al. Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode. Nat. Sustain. 6, 1705–1714 (2023).Article 

Google Scholar 
Zheng, J. et al. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 16, 13229–13238 (2014).Article 
CAS 

Google Scholar 
Cui, Y. Silicon anodes. Nat. Energy 6, 995–996 (2021).Article 
CAS 

Google Scholar 
Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).Article 
CAS 

Google Scholar 
Sun, J. et al. Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 35, e2209404 (2023).Article 

Google Scholar 
Zhang, H. et al. Designer anion enabling solid-state lithium-sulfur batteries. Joule 3, 1689–1702 (2019).Article 
CAS 

Google Scholar 
Yang, G. et al. Robust Solid/Electrolyte Interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021).Article 
CAS 

Google Scholar 
Khan, K., Tu, Z., Zhao, Q., Zhao, C. & Archer, L. A. Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chem. Mater. 31, 8466–8472 (2019).Article 
CAS 

Google Scholar 
Huang, S. et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochim. Acta 299, 820–827 (2019).Article 
CAS 

Google Scholar 
Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).Article 
CAS 

Google Scholar 
Sloop, S. E., Kerr, J. B. & Kinoshita, K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. J. Power Sources 119-121, 330–337 (2003).Article 
CAS 

Google Scholar 
Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).Article 
CAS 

Google Scholar 
Ando, H. et al. Mixture of monoglyme-based solvent and lithium Bis(trifluoromethanesulfonyl)amide as electrolyte for lithium ion battery using silicon electrode. Mater. Chem. Phys. 225, 105–110 (2019).Article 
CAS 

Google Scholar 
Bao, W. et al. Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography. Cell. Rep. Phys. Sci. 2, 100597–100610 (2021).Article 
CAS 

Google Scholar 
Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).Article 
CAS 

Google Scholar 
Choi, N.-S., Yao, Y., Cui, Y. & Cho, J. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials. J. Mater. Chem. 21, 9825–9840 (2011).Article 
CAS 

Google Scholar 
Xu, G. et al. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 7770–7776 (2021).Article 
CAS 

Google Scholar 
Zhu, B. et al. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. Sci. Adv. 5, eaax0651 (2019).Article 
CAS 

Google Scholar 
Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).Article 
CAS 

Google Scholar 
Kim, S. C. et al. Data-driven electrolyte design for lithium metal anodes. Proc. Natl Acad. Sci. USA 120, e2214357120 (2023).Article 
CAS 

Google Scholar 
Schroder, K. et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem. Mater. 27, 5531–5542 (2015).Article 
CAS 

Google Scholar 
Huang, J. et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 12, 1550–1557 (2019).Article 
CAS 

Google Scholar 
Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023).Article 
CAS 

Google Scholar 
Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).Article 
CAS 

Google Scholar 
Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).Article 
CAS 

Google Scholar 
Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).Article 
CAS 

Google Scholar 
Kim, K. J., Hinricher, J. J. & Rupp, J. L. M. High energy and long cycles. Nat. Energy 5, 278–279 (2020).Article 
CAS 

Google Scholar 
Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).Article 
CAS 

Google Scholar 
Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023).Article 
CAS 

Google Scholar 
Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015).Article 
CAS 

Google Scholar 
Lin, L. et al. A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries. Adv. Mater. 34, e2110323 (2022).Article 

Google Scholar 
Nanda, S. & Manthiram, A. Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling. Energy Environ. Sci. 13, 2501–2514 (2020).Article 
CAS 

Google Scholar 
Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).Article 
CAS 

Google Scholar 
Samoletov, A. A., Dettmann, C. P. & Chaplain, M. A. Thermostats for ‘slow’ configurational modes. J. Stat. Phys. 128, 1321–1336 (2007).Article 

Google Scholar 
Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).Article 
CAS 

Google Scholar 
Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369, 253–287 (1921).Article 

Google Scholar 
Tosi, M. P. Cohesion of ionic solids in the Born model. Solid State Phys. 16, 1–120 (1964).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles