A new DES-mediated synthesis of Henna-based benzopyranophenazines and benzoxanthenetriones

Mohammadi, M., Rezaei, A., Khazaei, A., Xuwei, S. & Huajun, Z. Targeted development of sustainable green catalysts for oxidation of alcohols via tungstate-decorated multifunctional amphiphilic carbon quantum dots. ACS Appl. Mater. Inter. 36, 33194–33206 (2019).Article 

Google Scholar 
Makone, S. S. & Niwadange, S. N. Green chemistry alternatives for sustainable development in organic synthesis. Green Chem. 3, 113–115 (2016).
Google Scholar 
Rahmati, M. & Habibi, D. Synthesis of a novel acidic ionic liquid catalyst and its application for preparation of pyridines via a cooperative vinylogous anomeric-based oxidation. Res. Chem. Intermed. 47, 1643–1661 (2021).Article 
CAS 

Google Scholar 
Greer, A. J., Jacquemin, J. & Hardacre, C. Industrial applications of ionic liquids. Molecules 21, 5207 (2020).Article 

Google Scholar 
Płotka-Wasylka, J., De la Guardia, M., Andruch, V. & Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 159, 105539 (2020).Article 

Google Scholar 
Abbott, A. P. et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chainsElectronic supplementary information (ESI) available: Plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2∶1). Chem. Commun. 19, 2010–2011 (2001).Article 

Google Scholar 
Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K. & Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70–71 (2003).Article 

Google Scholar 
Abbott, A. P., Boothby, D., Capper, G., Davies, D. L. & Rasheed, R. K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004).Article 
CAS 
PubMed 

Google Scholar 
Hayyan, M. et al. Are deep eutectic solvents benign or toxic?. Chemosphere 90, 2193–2195 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Dai, Y., Van Spronsen, J., Witkamp, G. J., Verpoorte, R. & Choi, Y. H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 76, 2162–2173 (2013).Article 
CAS 
PubMed 

Google Scholar 
Domínguez de María, P. Recent trends in (ligno) cellulose dissolution using neoteric solvents: Switchable, distillable and bio-based ionic liquids. J. Chem. Technol. Biotechnol. 89, 11–18 (2014).Article 

Google Scholar 
Hansen, B. B. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 3, 1232–1285 (2020).
Google Scholar 
Omar, K. A. & Sadeghi, R. Physicochemical properties of deep eutectic solvents: A review. J. Mol. Liq. 360, 119524 (2022).Article 
CAS 

Google Scholar 
Ünlü, A. E., Arıkaya, A. & Takaç, S. Use of deep eutectic solvents as catalyst: A mini-review. Green Process Synth. 1, 355–372 (2019).Article 

Google Scholar 
Morais, E. S., Freire, M. G., Freire, C. S., Coutinho, J. A. & Silvestre, A. J. Enhanced conversion of xylan into furfural using acidic deep eutectic solvents with dual solvent and catalyst behavior. ChemSusChem 4, 784–790 (2020).Article 

Google Scholar 
Abranches, D. O. & Coutinho, J. A. Is there depth to eutectic solvents?. Curr. Opin. Green Sustain. Chem. 35, 100612 (2022).Article 
CAS 

Google Scholar 
Goudarzi, H., Habibi, D. & Monem, A. Application of a novel deep eutectic solvent as a capable and new catalyst for the synthesis of tetrahydropyridines and 1, 3-thiazolidin-4-ones. Sci. Rep. 13, 5804 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morrison, H. G., Sun, C. C. & Neervannan, S. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm. 378, 136–139 (2009).Article 
CAS 
PubMed 

Google Scholar 
Jouyban, A. Handbook of Solubility Data for Pharmaceuticals (CRC Press, 2009).Book 

Google Scholar 
Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: Importance and enhancement techniques. Int. Sch. Res. Notices 2012, 1–10 (2012).
Google Scholar 
Marcus, Y. & Marcus, Y. Applications of Deep Eutectic Solvents 111–151 (Springer International Publishing, 2019).
Google Scholar 
Li, Z. & Lee, P. I. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. Int. J. Pharm. 505, 283–288 (2016).Article 
CAS 
PubMed 

Google Scholar 
Mokhtarpour, M., Shekaari, H., Martinez, F. & Zafarani-Moattar, M. T. Study of naproxen in some aqueous solutions of choline-based deep eutectic solvents: Solubility measurements, volumetric and compressibility properties. Int. J. Pharm. 564, 197–206 (2019).Article 
CAS 
PubMed 

Google Scholar 
Shivagan, D., Dale, P., Samantilleke, A. & Peter, L. Electrodeposition of chalcopyrite films from ionic liquid electrolytes. Thin Solid Films 515, 5899–5903 (2007).Article 
ADS 
CAS 

Google Scholar 
Phadtare, S. B. & Shankarling, G. S. Halogenation reactions in biodegradable solvent: Efficient bromination of substituted 1-aminoanthra-9, 10-quinone in deep eutectic solvent (choline chloride: urea). Green Chem. 12, 458–462 (2010).Article 
CAS 

Google Scholar 
Sonawane, Y. A., Phadtare, S. B., Borse, B. N., Jagtap, A. R. & Shankarling, G. S. Synthesis of diphenylamine-based novel fluorescent styryl colorants by knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent. Org. lett. 12, 1456–1459 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ilgen, F. & König, B. Organic reactions in low melting mixtures based on carbohydrates and L-carnitine-a comparison. Green Chem. 11, 848–854 (2009).Article 
CAS 

Google Scholar 
Coulembier, O. et al. Synthesis of poly (l-lactide) and gradient copolymers from al-lactide/trimethylene carbonate eutectic melt. Chem. Sci. 3, 723–726 (2012).Article 
CAS 

Google Scholar 
Ilgen, F. et al. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem. 11, 1948–1954 (2009).Article 
CAS 

Google Scholar 
Knözinger, H. & Kochloefl, K. Heterogeneous catalysis and solid catalysts, Ullmann’s Encyclo-pedia of Industrial Chemistry. (2000).Toure, B. B. & Hall, D. G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 109, 4439–4486 (2009).Article 
CAS 
PubMed 

Google Scholar 
Hulme, C. & Gore, V. Multi-component reactions: Emerging chemistry in drug discovery from xylocain to crixivan. Curr. Med. Chem. 10, 51–80 (2003).Article 
CAS 
PubMed 

Google Scholar 
Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phospho-nates. Beilstein J. Org. Chem. 12, 1269–1301 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cioc, R. C. & Ruijter, E. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Curr. Green Chem. 16, 2958–2975 (2014).Article 
CAS 

Google Scholar 
Estevez, V., Villacampa, M. & Menendez, J. C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev. 39, 4402–4421 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ramón, D. J. & Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed. 44, 1602–1634 (2005).Article 

Google Scholar 
Mironov, M. A. Multicomponent reactions and combinatorial chemistry. Russ. J. Gen. Chem. 80, 2628–2646 (2020).Article 

Google Scholar 
Zakeri, M., Nasef, M. M., Abouzari-Lotf, E., Moharami, A. & Heravi, M. M. Sustainable alternative protocols for the multicomponent synthesis of spiro-4H-pyrans catalyzed by 4-di-methylaminopyridine. J. Indus. Engin. Chem. 29, 273–281 (2015).Article 
CAS 

Google Scholar 
Groenendaal, B., Ruijter, E. & Orru, R. V. 1-Azadienes in cycloaddition and multicomponent reactions towards N-heterocycles. Chem. Commun. 43, 5474–5489 (2008).Article 

Google Scholar 
Zhou, B., Liu, Q., Wang, H., Jin, H. & Liu, Y. CuI/Cu (OTf)2/DMSO system-catalyzed intra-molecular oxidative cyclization of (o-alkynyl) arylketones: Efficient synthesis of 1,4-naphtho-quinones. Tetrahedron Lett. 75, 3815–3821 (2019).Article 
CAS 

Google Scholar 
Dar, U. A. et al. Quantum chemical approach towards the secondary amino derivatives of C (3) substituted 1,4-naphtho-quinone: Combined molecular and dft calculations. J. Mol. Struct. 1203, 127306 (2020).Article 
CAS 

Google Scholar 
Suhara, Y. et al. Synthesis of new vitamin K analogues as steroid and xenobiotic receptor (SXR) agonists: Insights into the biological role of the side chain part of vitamin K. J. Med. Chem. 54, 4918–4922 (2011).Article 
CAS 
PubMed 

Google Scholar 
Silva, T. M. et al. Molluscicidal activity of synthetic lapachol amino and hydrogenated derivatives. Bioorg. Med. Chem. Lett. 13, 193–196 (2005).Article 
CAS 

Google Scholar 
Mäntylä, A. et al. Synthesis, in vitro evaluation, and antileishmanial activity of water-soluble prodrugs of buparvaquone. J. Med. Chem. 47, 188–195 (2004).Article 
PubMed 

Google Scholar 
Ganapaty, S., Thomas, P. S., Karagianis, G. & Waterman, P. G. Antiprotozoal and cytotoxic naphthalene derivatives from diospyros assimilis. Phytochem. 67, 1950–1956 (2006).Article 
CAS 

Google Scholar 
Tandon, V. K. et al. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents. Eur. J. Med. Chem. 44, 1086–1092 (2009).Article 
CAS 
PubMed 

Google Scholar 
Tandon, V. K. et al. Naphtho[2,3-b][1,4]-thiazine-5,10-diones and 3-substituted-1,4-dioxo-1,4-dihydronaphthalen-2-yl-thioalkan-oate derivatives: Synthesis and biological evaluation as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 16, 5883–5887 (2006).Article 
CAS 
PubMed 

Google Scholar 
Biot, C., Bauer, H., Schirmer, R. H. & Davioud-Charvet, E. 5-Substituted tetrazoles as bioisosteres of carboxylic acids. Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials. J. Med. Chem. 47, 5972–5983 (2004).Article 
CAS 
PubMed 

Google Scholar 
Duroux, L., Delmontte, F. M., Lancelin, J. M., Keravis, G. & Allemand, C. J. Insight into naphtho-quinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojuglone β-D-gluco-pyranoside. Biochem. J. 333, 275–283 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marchionatti, A. M., Picotto, G., Narvaez, C. J., Welsh, J. & de Talamoni, N. G. T. Antiproliferative action of menadione and 1,25 (OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol. 113, 227–232 (2009).Article 
CAS 
PubMed 

Google Scholar 
Weissenberg, M. et al. Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the Mexican bean beetle, Epilachna varivestis. J. Chem. Ecol. 23, 3–18 (1997).Article 
CAS 

Google Scholar 
Reese, S. et al. The Pin 1 inhibitor juglone attenuates kidney fibrogenesis via Pin 1-independent mechanisms in the unilateral ureteral occlusion model. Fibrogenesis Tissue Repair 3, 1–8 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Talcott, R. E., Smith, M. T. & Giannini, D. D. Inhibition of microsomal lipid peroxidation by naphthoquinones: structure-activity relationships and possible mechanisms of action. Arch. Biochem. Biophys. 241, 88–94 (1985).Article 
CAS 
PubMed 

Google Scholar 
Green, G. R. et al. Comprehensive Heterocyclic Chemistry II Vol. 469 (Pergamon Press, 1995).
Google Scholar 
Pandit, K. S., Chavan, P. V., Desai, U. V., Kulkarni, M. A. & Wadgaonkar, P. P. Trishydroxy-methylaminomethane (THAM): A novel organocatalyst for a environmentally benign synthesis of medicinally important tetrahydrobenzo[b]pyrans and pyran-annulated heterocycles. New J. Chem. 39, 4452–4463 (2015).Article 
CAS 

Google Scholar 
Adreani, L. L. & Lapi, E. n some new esters of coumarin-3-carboxylic acid wit balsamic and bronchodilator action Boll. Chim. Farm. 99, 583–586 (1960).CAS 

Google Scholar 
Bonsignore, L., Loy, G., Secci, D. & Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem. 28, 517–520 (1993).Article 
CAS 

Google Scholar 
Ghorbani-Choghamarani, A., Sahraei, R. & Taherinia, Z. Ni (II) immobilized on modified boehmite nanostructures: A novel, inexpensive, and highly efficient heterogeneous nanocatalyst for multi-component domino reactions. Res. Chem. Intermed. 5, 3199–3214 (2019).Article 

Google Scholar 
Mishra, A., Pandey, Y. K., Tufail, F. & Singh, J. A convenient and green synthetic approach for Benzo[a]pyrano[2,3-c]phenazines via supramolecular catalysis. Catal. Lett. 150, 1659–1668 (2020).Article 
CAS 

Google Scholar 
Yan, L., Li, Y., Yang, B. & Gao, W. InBr 3-catalyzed synthesis of highly functionalized piperidines and benzo[a]pyrano[2,3-c]phenazines. Polycyclic Aromat. Compd. 42, 534–542 (2022).Article 
CAS 

Google Scholar 
Ghorbani-Choghamarani, A., Mohammadi, M., Shiri, L. & Taherinia, Z. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed. 45, 5705–5723 (2019).Article 
CAS 

Google Scholar 
Abadi, A. Y. E., Maghsoodlou, M. T., Heydari, R. & Mohebat, R. An efficient four-component domino protocol for the rapid and green synthesis of functionalized benzo[a]pyrano[2,3-c] phenazine derivatives using caffeine as a homogeneous catalyst. Res. Chem. Intermed. 42, 1227–1235 (2016).Article 
CAS 

Google Scholar 
Yazdani-Elah-Abadi, A., Maghsoodlou, M. T., Mohebat, R. & Heydari, R. Theophylline as a new and green catalyst for the one-pot synthesis of spiro[benzo[a]pyrano[2,3-c]phenazine] and benzo [a]pyrano[2,3-c]phenazine derivatives under solvent-free conditions. Chinese Chem. Lett. 28, 446–452 (2017).Article 
CAS 

Google Scholar 
Naeimi, H. & Zarabi, M. F. Multisulfonate hyperbranched polyglycerol functionalized graphene oxide as an efficient reusable catalyst for green synthesis of benzo[a]pyrano-[2,3-c]phenazines under solvent-free conditions. RSC Adv. 9, 7400–7410 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nikoorazm, M., Khanmoradi, M. & Mohammadi, M. Guanine-La complex supported onto SBA-15: A novel efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component Tandem Knoevenagel condensation–Michael addition–cyclization Reactions. Appl. Organomet. Chem. 34, 5504 (2020).Article 

Google Scholar 
Daraie, M., Tamoradi, T., Heravi, M. M. & Karmakar, B. Ce immobilized 1H-pyrazole-3, 5-dicarboxylic acid (PDA) modified CoFe2O4: A potential magnetic nanocomposite catalyst towards the synthesis of diverse benzo[a]pyrano [2,3-c] phenazine derivatives. J. Mol. Struct. 1245, 131089 (2021).Article 
CAS 

Google Scholar 
Hasaninejad, A. & Firoozi, S. One-pot, sequential four-component synthesis of benzo[c]pyrano- [3,2-a]phenazine, bis-benzo[c]pyrano[3,2-a]phenazine and oxospiro benzo[c]pyrano[3,2-a]phena-zine derivatives using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an efficient and reusable solid base catalyst. Mol. Divers. 17, 499–513 (2013).Article 
CAS 
PubMed 

Google Scholar 
Rahnamafar, R., Moradi, L. & Khoobi, M. Synthesis of benzo[b]xanthene-triones and tetrahydro-chromeno[2,3-b]xanthene tetraones via three-or pseudo–five-component reactions using Fe3O4@ SiO2/PEtOx as a novel, magnetically recyclable, and eco-friendly nanocatalyst. J. Heterocycl. Chem. 57, 1825–1837 (2020).Article 
CAS 

Google Scholar 
Reddy, A. V. S., Reddy, M. V. & Jeong, Y. T. Silica tungstic acid (STA) as a highly efficient and reusable catalyst for the synthesis of benzoxanthenes under solvent-free conditions in ultra-sonication. Res. Chem. Intermed. 42, 5209–5218 (2016).Article 
CAS 

Google Scholar 
Khurana, J. M., Lumb, A. & Chaudhary, A. Efficient and green syntheses of 12-aryl-2,3,4,12-tetra-hydrobenzo[b]xanthene-1,6,11-triones in water and task-specific ionic liquid. Synth. Commun. 43, 2147–2154 (2013).Article 
CAS 

Google Scholar 
Li, J., Lu, L. & Su, W. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett. 51, 2434–2437 (2010).Article 
CAS 

Google Scholar 
Rahmatpour, A. Polystyrene-supported GaCl3 as a highly efficient and reusable heterogeneous Lewis acid catalyst for the three-component synthesis of benzoxanthenes. Monatsh. Chem. 144, 1205–1212 (2013).Article 
CAS 

Google Scholar 
Dabiri, M., Tisseh, Z. N. & Bazgir, A. An efficient three-component synthesis of benzoxanthenes in water. J. Heterocycl. Chem. 47, 1062–1065 (2010).Article 
CAS 

Google Scholar 
Safaei-Ghomi, J. & Eshteghal, F. Nano-Fe3O4/PEG/succinic anhydride: A novel and efficient catalyst for the synthesis of benzoxanthenes under ultrasonic irradiation. Ultrason. Sonochem. 38, 488–495 (2017).Article 
CAS 
PubMed 

Google Scholar 
Du, B. et al. Efficient one-pot three-component synthesis of 3,4-dihydro-12-phenyl-2H-benzo[b]xanthene-1,6,11(12H)-trione derivatives in ionic liquid. Res. Chem. Intermed. 39, 1323–1333 (2013).Article 
CAS 

Google Scholar 
Shaterian, H. R. & Azizi, K. Brønsted acidic ionic liquids catalyzed one-pot synthesis of benzoxanthene leuco-dye derivatives. Res. Chem. Intermed. 41, 409–417 (2015).Article 
CAS 

Google Scholar 
Turhan, K. et al. Novel benzo- [b]xanthene derivatives: Bismuth(III) triflate-catalyzed one-pot synthesis, characterization, and acetylcholinesterase, glutathione S-transferase, and butyrylcholinesterase inhibitory properties. Arch. Pharm. 353, 2000030 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles