An interpretable deep learning framework for genome-informed precision oncology

Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016).Article 

Google Scholar 
Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).Article 

Google Scholar 
Milbury, C. A. et al. Clinical and analytical validation of FoundationOne(R)CDx, a comprehensive genomic profiling assay for solid tumors. PLoS ONE 17, e0264138 (2022).Article 

Google Scholar 
Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. Molecular profiling for precision cancer therapies. Genome Med. 12, 8 (2020).Article 

Google Scholar 
Marquart, J., Chen, E. Y. & Prasad, V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 4, 1093–1098 (2018).Article 

Google Scholar 
Prasad, V. Perspective: the precision-oncology illusion. Nature 537, S63 (2016).Article 

Google Scholar 
Flaherty, K. T. et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute molecular analysis for therapy choice (NCI-MATCH). J. Clin. Oncol. 38, 3883–3894 (2020).Article 

Google Scholar 
Liu, R. et al. Systematic pan-cancer analysis of mutation-treatment interactions using large real-world clinicogenomics data. Nat. Med. 28, 1656–1661 (2022).Article 

Google Scholar 
Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).Article 

Google Scholar 
Vandin, F., Upfal, E. & Raphael, B. J. Finding driver pathways in cancer: models and algorithms. Algorithms Mol. Biol. 7, 23 (2012).Article 

Google Scholar 
Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 (2012).Article 

Google Scholar 
Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).Article 

Google Scholar 
Ding, Z., Zu, S. & Gu, J. Evaluating the molecule-based prediction of clinical drug responses in cancer. Bioinformatics 32, 2891–2895 (2016).Article 

Google Scholar 
Tomczak, K., Czerwińska, P. & Wiznerowicz, M. Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol./Współczesna Onkol. 2015, 68–77 (2015).Article 

Google Scholar 
Chen, L., Cai, C., Chen, V. & Lu, X. Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model. BMC Bioinform. 17, 9 (2016).Article 

Google Scholar 
Young, J., Andrews, B., Cooper, G. & Lu, X. Learning latent causal structures with a redundant input neural network. In Proc. Machine Learning Research (eds Le, T. D. et al.) 62–91 (PMLR, 2020).Young, J., Ren, S., Chen, L. & Lu, X. Revealing the impact of genomic alterations on cancer cell signaling with an interpretable deep learning model. Cancers 15, 3857 (2023).Article 

Google Scholar 
Tao, Y. et al. Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers. Nucleic Acids Res. 50, 10869–10881 (2022).Article 

Google Scholar 
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 

Google Scholar 
Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321–337 (2018).Article 

Google Scholar 
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018).Article 

Google Scholar 
Larribere, L. & Utikal, J. Update on GNA alterations in cancer: implications for uveal melanoma treatment. Cancers https://doi.org/10.3390/cancers12061524 (2020).Takaku, M., Grimm, S. A. & Wade, P. A. GATA3 in breast cancer: tumor suppressor or oncogene? Gene Expr. 16, 163–168 (2015).Article 

Google Scholar 
Singh, A. et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006).Article 

Google Scholar 
Yan, X. et al. DHX9 inhibits epithelial-mesenchymal transition in human lung adenocarcinoma cells by regulating STAT3. Am. J. Transl. Res. 11, 4881–4894 (2019).
Google Scholar 
Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).Article 

Google Scholar 
Lievre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).Article 

Google Scholar 
Li, H. et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol. Cancer 19, 107 (2020).Article 

Google Scholar 
Takamatsu, S., Murakami, K. & Matsumura, N. Homologous recombination deficiency unrelated to platinum and PARP inhibitor response in cell line libraries. Sci. Data 11, 171 (2024).Article 

Google Scholar 
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).Article 

Google Scholar 
Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D. & Lu, X. Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol. Cancer Res. 16, 269–278 (2018).Article 

Google Scholar 
Tao, Y., Ren, S., Ding, M. Q., Schwartz, R. & Lu, X. Predicting drug sensitivity of cancer cell lines via collaborative filtering with contextual attention. In Proc. Machine Learning for Healthcare Conference 660–684 (PMLR, 2020).Ren, S. et al. De novo prediction of cell-drug sensitivities using deep learning-based graph regularized matrix factorization. In Proc. Pacific Symposium on Biocomputing (eds Altman, R. B. et al.) 278–289 (Buxton Village Books, 2022).Cai, C. et al. Systematic discovery of the functional impact of somatic genome alterations in individual tumors through tumor-specific causal inference. PLoS Comput. Biol. 15, e1007088 (2019).Article 

Google Scholar 
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).Article 

Google Scholar 
Garcia-Alonso, L. et al. Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer Res. 78, 769–780 (2018).Article 

Google Scholar 
Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at https://arxiv.org/abs/1301.3781 (2013).Kim, S., Lee, H., Kim, K. & Kang, J. Mut2Vec: distributed representation of cancerous mutations. BMC Med. Genet. 11, 57–69 (2018).
Google Scholar 
Dincer, A., Celik, S., Hiranuma, N. & Lee, S. DeepProfile: deep learning of cancer molecular profiles for precision medicine. Preprint at bioRxiv. https://doi.org/10.1101/278739 (2018).Rampášek, L., Hidru, D., Smirnov, P., Haibe-Kains, B. & Goldenberg, A. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics 35, 3743–3751 (2019).Article 

Google Scholar 
Sharifi-Noghabi, H., Harjandi, P. A., Zolotareva, O., Collins, C. C. & Ester, M. Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction. Nat. Mach. Intell. 3, 962–972 (2021).Article 

Google Scholar 
Tao, Y., Cai, C., Cohen, W. W. & Lu, X. From genome to phenome: predicting multiple cancer phenotypes based on somatic genomic alterations via the genomic impact transformer. In Proc. Pacific Symposium on Biocomputing 2020 (eds Altman, R. B. et al.) 79–90 (Buxton Village Books, 2020).Geeleher, P., Cox, N. & Huang, R. S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9, e107468 (2014).Article 

Google Scholar 
Ren, S. Dataset for ResGitDR. Figshare https://doi.org/10.6084/m9.figshare.25943893 (2024).Ren, S. Renshuangxia/resgitdr: Initial Release. 0.1.0. Zenodo https://doi.org/10.5281/zenodo.11559736 (2024).

Hot Topics

Related Articles