Electrocatalytic cyclic deracemization enabled by a chemically modified electrode

Wang, P.-Z., Xiao, W.-J. & Chen, J.-R. Light-empowered contra-thermodynamic stereochemical editing. Nat. Rev. Chem. 7, 35–50 (2022).Article 
CAS 
PubMed 

Google Scholar 
Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).Article 
CAS 
PubMed 

Google Scholar 
Blackmond, D. G. “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).Article 
CAS 

Google Scholar 
Chibata, I., Tosa, T. & Sano, R. Amino acid isomerization in the production of l-phenylalanine from d-phenylalanine by bacteria. Appl. Microbiol. 13, 618–624 (1965).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alexeeva, M., Enright, A., Dawson, M. J., Mahmoudian, M. & Turner, N. J. Deracemization of α-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew. Chem. Int. Ed. 41, 3177–3180 (2002).Article 
CAS 

Google Scholar 
Adair, G. R. A. & Williams, J. M. J. A novel ruthenium catalysed deracemisation of alcohols. Chem. Commun. 5578–5579 (2005).Lackner, A. D., Samant, A. V. & Toste, F. D. Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. J. Am. Chem. Soc. 135, 14090–14093 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ji, Y., Shi, L., Chen, M. W., Feng, G. S. & Zhou, Y. G. Concise redox deracemization of secondary and tertiary amines with a tetrahydroisoquinoline core via a nonenzymatic process. J. Am. Chem. Soc. 137, 10496–10499 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wan, M., Sun, S., Li, Y. & Liu, L. Organocatalytic redox deracemization of cyclic benzylic ethers enabled by an acetal pool strategy. Angew. Chem. Int. Ed. 56, 5116–5120 (2017).Article 
CAS 

Google Scholar 
Qu, P., Kuepfert, M., Jockusch, S. & Weck, M. Compartmentalized nanoreactors for one-pot redox-driven transformations. ACS Catal. 9, 2701–2706 (2019).Article 
CAS 

Google Scholar 
Chen, F. et al. Simultaneous access to two enantio-enriched alcohols by a single Ru-catalyst: asymmetric hydrogen transfer from racemic alcohols to matching ketones. ACS Catal. 12, 14429–14435 (2022).Article 
CAS 

Google Scholar 
Holzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).Article 
PubMed 

Google Scholar 
Troster, A., Bauer, A., Jandl, C. & Bach, T. Enantioselective visible-light-mediated formation of 3-cyclopropylquinolones by triplet-sensitized deracemization. Angew. Chem. Int. Ed. 58, 3538–3541 (2019).Article 

Google Scholar 
Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3-diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Ed. 59, 21640–21647 (2020).Article 
CAS 

Google Scholar 
Plaza, M., Jandl, C. & Bach, T. Photochemical deracemization of allenes and subsequent chirality transfer. Angew. Chem. Int. Ed. 59, 12785–12788 (2020).Article 
CAS 

Google Scholar 
Grosskopf, J. et al. Photochemical deracemization at sp3-hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).Article 
CAS 
PubMed 

Google Scholar 
Plaza, M., Grosskopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical Study. J. Am. Chem. Soc. 143, 11209–11217 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kratz, T. et al. Photochemical deracemization of chiral alkenes via triplet energy transfer. J. Am. Chem. Soc. 144, 10133–10138 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kutta, R. J. et al. Multifaceted view on the mechanism of a photochemical deracemization reaction. J. Am. Chem. Soc. 145, 2354–2363 (2023).Article 
CAS 
PubMed 

Google Scholar 
Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, C. et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).Article 
CAS 
PubMed 

Google Scholar 
Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wen, L. et al. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 382, 458–464 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. & Hu, X. Visible-light-driven catalytic deracemization of secondary alcohols. Angew. Chem. Int. Ed. 60, 22833–22838 (2021).Article 
CAS 

Google Scholar 
Gu, Z. et al. Deracemization through sequential photoredox-neutral and chiral Bronsted acid catalysis. Angew. Chem. Int. Ed. 61, e202211241 (2022).Article 
CAS 

Google Scholar 
Wang, J., Peng, Y., Xu, J. & Wu, Q. Deracemization of racemic alcohols combining photooxidation and biocatalytic reduction. Org. Biomol. Chem. 20, 7765–7769 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wendlandt, A. E. Photocatalytic deracemization fixes the mix. Science 366, 304–305 (2019).Article 
CAS 
PubMed 

Google Scholar 
Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).Article 
CAS 

Google Scholar 
Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Möhle, S. et al. Modern electrochemical aspects for the synthesis of value‐added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).Article 

Google Scholar 
Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).Article 
CAS 

Google Scholar 
Xiong, P. & Xu, H. C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).Article 
CAS 
PubMed 

Google Scholar 
Yuan, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 52, 3309–3324 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jiao, K. J., Xing, Y. K., Yang, Q. L., Qiu, H. & Mei, T. S. Site-selective C–H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liu, J., Lu, L., Wood, D. & Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci. 6, 1317–1340 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, F. & Stahl, S. S. Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron–proton transfer mediators. Acc. Chem. Res. 53, 561–574 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Malapit, C. A. et al. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 122, 3180–3218 (2022).Article 
CAS 
PubMed 

Google Scholar 
Corma, A., Navas, J. & Sabater, M. J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev. 118, 1410–1459 (2018).Article 
CAS 
PubMed 

Google Scholar 
Reed-Berendt, B. G., Latham, D. E., Dambatta, M. B. & Morrill, L. C. Borrowing hydrogen for organic synthesis. ACS Cent. Sci. 7, 570–585 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Santana, C. G. & Krische, M. J. From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catal. 11, 5572–5585 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y., Lim, C.-S., Sim, D. S. B., Pan, H.-J. & Zhao, Y. Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid. Angew. Chem. Int. Ed. 53, 1399–1403 (2014).Article 
CAS 

Google Scholar 
Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rong, Z. Q., Zhang, Y., Chua, R. H., Pan, H. J. & Zhao, Y. Dynamic kinetic asymmetric amination of alcohols: from a mixture of four isomers to diastereo- and enantiopure α-branched amines. J. Am. Chem. Soc. 137, 4944–4947 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yang, P. et al. Nickel-catalyzed N-alkylation of acylhydrazines and arylamines using alcohols and enantioselective examples. Angew. Chem. Int. Ed. 56, 14702–14706 (2017).Article 
CAS 

Google Scholar 
Xu, R. et al. Anti-Markovnikov hydroamination of racemic allylic alcohols to access chiral γ-amino alcohols. Angew. Chem. Int. Ed. 59, 21959–21964 (2020).Article 
CAS 

Google Scholar 
Pan, H. J. et al. Catalytic diastereo- and enantioconvergent synthesis of vicinal diamines from diols through borrowing hydrogen. Angew. Chem. Int. Ed. 60, 18599–18604 (2021).Article 
CAS 

Google Scholar 
Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).Article 
CAS 

Google Scholar 
Hickey, D. P., Milton, R. D., Chen, D., Sigman, M. S. & Minteer, S. D. TEMPO-modified linear poly(ethylenimine) for immobilization-enhanced electrocatalytic oxidation of alcohols. ACS Catal. 5, 5519–5524 (2015).Article 
CAS 

Google Scholar 
Das, A. & Stahl, S. S. Noncovalent immobilization of molecular electrocatalysts for chemical synthesis: efficient electrochemical alcohol oxidation with a pyrene–TEMPO conjugate. Angew. Chem. Int. Ed. 56, 8892–8897 (2017).Article 
CAS 

Google Scholar 
Johnson, B. M., Francke, R., Little, R. D. & Berben, L. A. High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator. Chem. Sci. 8, 6493–6498 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hashiguchi, S., Fujii, A., Takehara, J., Ikariya, T. & Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. J. Am. Chem. Soc. 117, 7562–7563 (1995).Article 
CAS 

Google Scholar 
Hashiguchi, S. et al. Kinetic resolution of racemic secondary alcohols by RuII-catalyzed hydrogen transfer. Angew. Chem. Int. 36, 288–290 (1997).Article 
CAS 

Google Scholar 
Nishibayashi, Y., Yamauchi, A., Onodera, G. & Uemura, S. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine−ruthenium complexes. J. Org. Chem. 68, 5875–5880 (2003).Article 
CAS 
PubMed 

Google Scholar 
Li, Y.-Y. et al. Kinetic resolution of racemic secondary alcohols catalyzed by chiral diaminodiphosphine−Ir(I) complexes. Org. Lett. 8, 5565–5567 (2006).Article 
CAS 
PubMed 

Google Scholar 
Arita, S., Koike, T., Kayaki, Y. & Ikariya, T. Aerobic oxidative kinetic resolution of racemic secondary alcohols with chiral bifunctional amido complexes. Angew. Chem. Int. Ed. 47, 2447–2449 (2008).Article 
CAS 

Google Scholar 
Galvin, C. M. & Waymouth, R. M. Electron-rich phenoxyl mediators improve thermodynamic performance of electrocatalytic alcohol oxidation with an iridium pincer complex. J. Am. Chem. Soc. 142, 19368–19378 (2020).Article 
CAS 
PubMed 

Google Scholar 
Morris, R. H. Bronsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 116, 8588–8654 (2016).Article 
CAS 
PubMed 

Google Scholar 
Murray, P. R. D. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 122, 2017–2291 (2022).Article 
CAS 
PubMed 

Google Scholar 
Deronzier, A. & Moutet, J. C. Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications. Acc. Chem. Res. 22, 249–255 (1989).Article 
CAS 

Google Scholar 
Chardon-Noblat, S., de Oliveira, I. M. F., Moutet, J.-C. & Tingry, S. Electrocatalytic hydrogenation on Poly[RhIII(L)2(Cl)2]+ (L = pyrrole-substituted 2,2’-bipyridine or 1,10-phenanthroline) films electrodes. J. Mol. Catal. A 99, 13–21 (1995).Article 
CAS 

Google Scholar 
Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed. 59, 18866–18884 (2020).Article 
CAS 

Google Scholar 
Dieter, H., Sara, F., Iain, L. & Stefan, P. New Indanyloxyphenylcyclopropanecarb oxylic acids. Patent WO 2013/178575 A1 (27 May 2013).Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Kern, J. C. et al. 1-Methyl-1H-pyrrole-2-carbonitrile containing tetrahydronaphthalene derivatives as non-steroidal progesterone receptor antagonists. Bioorg. Med. Chem. Lett. 20, 4816–4818 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ni, D. et al. Stereoselective [4+2]-cycloaddition with chiral alkenylboranes. Angew. Chem. Int. Ed. 59, 11432–11439 (2020).Article 
CAS 

Google Scholar 
Lei, C., Yip, Y. J. & Zhou, J. S. Nickel-catalyzed direct synthesis of aryl olefins from ketones and organoboron reagents under neutral conditions. J. Am. Chem. Soc. 139, 6086–6089 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. A., Gu, X. & Wendlandt, A. E. A change from kinetic to thermodynamic control enables trans-selective stereochemical editing of vicinal diols. J. Am. Chem. Soc. 144, 599–605 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y.-A. et al. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 378, 383–390 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oswood, C. J. & MacMillan, D. W. C. Selective isomerization via transient thermodynamic control: dynamic epimerization of trans to cis diols. J. Am. Chem. Soc. 144, 93–98 (2022).Article 
CAS 
PubMed 

Google Scholar 
Castillo, C. E. et al. Electrochemical generation and spectroscopic characterization of the key rhodium(III) hydride intermediates of rhodium poly(bipyridyl) H2-evolving catalysts. Inorg. Chem. 57, 11225–11239 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bakac, A. Aqueous rhodium(III) hydrides and mononuclear rhodium(II) complexes. Dalton Trans 1589–1596 (2006).Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (John wiley, 2001).Wang, L. et al. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode. Chem. Commun. 51, 7883–7886 (2015).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles